Name:

Enrolment No:

: 5th

Semester

UPES

End Semester Examination, December 2023

Course: Machine Learning
Program: B. Tech. (CSE-H+NH)-All Spec.

Program: B. Tech. (CSE-H+NH)-All Spec. Time : 03 hrs.
Course Code: CSAI3014P Max. Marks: 100

Instructions: Attempt all questions

SECTION A (5Qx4M=20Marks)

S. No.				Marks	CO
Q 1	Suppose	you have a dataset with tw	vo features, "Age" and "Income,".		
	Person	Age (years)	Income (USD)		
	Α	25	50000		
	В	30	60000	4	CO1
	С	35	75000		
	D	22	48000		
	Do the Z-	score scaling for the above	e-mentioned features.		
Q 2	What is learning?	4	CO1		
	predicting	g whether an eman is spar	m (1) or not spam (0). You have a		
	dataset of	-	your model produces the following		
	dataset of predicted	four email examples, and probabilities and actual lab	l your model produces the following bels.	4	CO2
	dataset of predicted	four email examples, and probabilities and actual lal	l your model produces the following bels. Actual Label (y)	4	CO2
	dataset of predicted Email E1	four email examples, and probabilities and actual lal Predicted Probability (P(y=1)) 0.9	l your model produces the following bels. Actual Label (y)	4	CO2
	dataset of predicted Email E1 E2	four email examples, and probabilities and actual lab Predicted Probability (P(y=1)) 0.9 0.7	l your model produces the following bels. Actual Label (y) 1	4	CO2
	dataset of predicted Email E1 E2 E3 E4	four email examples, and probabilities and actual lab Predicted Probability (P(y=1)) 0.9 0.7 0.4 0.6	l your model produces the following bels. Actual Label (y) 1 0 1	4	CO2
Q 4	dataset of predicted Email E1 E2 E3 E4 Calculate How multi	four email examples, and probabilities and actual lal Predicted Probability (P(y=1)) 0.9 0.7 0.4 0.6 the average Binary Cross	l your model produces the following bels. Actual Label (y) 1 0 1	4	CO2
	dataset of predicted Email E1 E2 E3 E4 Calculate How multisuitable e.	four email examples, and probabilities and actual lal Predicted Probability (P(y=1)) 0.9 0.7 0.4 0.6 the average Binary Cross ticlass classification is imp	l your model produces the following bels. Actual Label (y) 1 1 0 1 Entropy for this dataset. Definition of the produces of the following bels.		
Q 4 Q 5	dataset of predicted Email E1 E2 E3 E4 Calculate How multisuitable e.	four email examples, and probabilities and actual lal Predicted Probability (P(y=1)) 0.9 0.7 0.4 0.6 the average Binary Cross ticlass classification is important to explain it.	l your model produces the following bels. Actual Label (y) 1 1 0 1 Entropy for this dataset. Definition of the produces of the following bels.	4	CO4
	dataset of predicted Email E1 E2 E3 E4 Calculate How multisuitable e.	four email examples, and probabilities and actual lal Predicted Probability (P(y=1)) 0.9 0.7 0.4 0.6 the average Binary Cross ticlass classification is important to explain it. The significance of Regulari	Actual Label (y) 1 1 1 Continuous for this dataset. Delemented in logistic regression. Use dization.	4	CO4

Q 7	You are working on a medical diagnosis model to detect a rare disease. The confusion matrix for your model's predictions is as follows: - True Positives (TP): 8 - True Negatives (TN): 120 - False Positives (FP): 4 - False Negatives (FN): 2 Calculate the following evaluation metrics based on this confusion matrix: a) Accuracy b) Precision c) Recall (Sensitivity) d) Specificity e) F1 score	10	CO2
Q 8	Define K-Nearest Neighbors (KNN) and explain how it is used for classification. Discuss the significance of the parameter 'k' in KNN.	10	CO3
Q 9	Discuss the concept of residual errors in the context of Gradient Boosting. How are these residuals used in subsequent iterations to refine the model's predictions? OR Explain the regularization techniques used in XG Boost to prevent overfitting. Discuss the significance of hyperparameters such as learning rate, maximum depth, and the number of trees.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Explain the following terms in context of Support Vector Machine: a) Soft and Hard Margin b) Kernel c) Hyper-plane d) Marginal Distance e) Support Vectors		
	OR	20	CO4
	 a) Explain the basic principles of Principal Component Analysis (PCA) and how it is used for dimensionality reduction. Discuss its applications in feature extraction and visualization. b) Compare and contrast K-means clustering with hierarchical clustering. Provide a step-by-step explanation of the K-means clustering algorithm, including how the initial centroids are chosen and how clusters are updated in each iteration. 		
Q 11	Draw the step-by-step decision tree using the concept of entropy and information gain for the data set below. Show the intermediate	20	CO3

Outlook	Temperature	Humidity	Wind	Played football(yes/no)
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No