Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Probability and Statistics Semester: III Program: B. Tech. CSE Course Code: CSEG 2036P

Time: 3 hrs. **Max. Marks:** 100

		(5	SECTION A 5Qx4M=20Marks	3)		
S. No.					Marks	СО
Q 1	Discuss covariance variable <i>X</i> and <i>Y</i> ,					
	Сс	$\operatorname{ov}(aX+b,cY+a)$	$l) = ac \times \mathrm{Cov}(X,$	Y)	4	CO2
	for constants <i>a</i> , <i>b</i> ,					
Q 2	Define Marginal F marginal probabil X and Y, given the					
	X = 0	$Y = 0$ $\frac{1}{9}$	$Y = 1$ $\frac{1}{6}$	$Y = 2$ $\frac{1}{9}$	4	CO1
	X = 1	$\frac{9}{1}$	$\frac{1}{9}$	$\frac{1}{3}$		
	Identify if X and					
Q 3	Outline what is m a random variable					
		4	CO1, CO2			
	and if the second of					

Q 4	Define sample spaces. Identify the set expression as well as Venn diagram representation for the following cases:		
	 At least one of the events A, B, or C occurs At most two of the events A, B, or C occur. 	4	CO1
	for a sample space <i>S</i> and three events <i>A</i> , <i>B</i> and <i>C</i> .		
Q 5	Discuss correlation coefficient. Identify $Var(X')$, $Var(Y')$ and $r_{X'Y'}$ in terms of $Var(X)$, $Var(Y)$ and r_{XY} respectively, if X is the height of students in a class in centimeters and Y is the weight of the students in kilograms, and we undertake a transformation to height in inches (X') and weight in pounds (Y') :	4	CO2
	$X \to X' = 0.3937 \times X$ $Y \to Y' = 2.2046 \times Y$		
	SECTION B		
Q 6	(4Qx10M= 40 Marks) <i>Choice 1:</i> Define the Kruskal Wallis H Test, its null and alternate		
	 hypothesis as well as its relevant test statistic. Describe any one assumption relevant to this statistical test. Highlight how it is better than one-way ANOVA. Apply your understanding of the Kruskal Wallis H Test for analyzing the scores of three groups of students (Group A, Group B and Group C) with 		
	Group A 73 76 87 91		
	Group B 66 72 81 83		
	Group C 62 64 71 74		
	<u>Given</u> : The critical value for the H test for 2 degrees of freedom and	10	CO4
	$n_1 = 4$, $n_2 = 4$ and $n_3 = 4$ at $\alpha = 0.05$ is 5.692. <i>Choice 2:</i> Define regression, principle of least squares and residuals.		
	<i>Choice 2:</i> Define regression, principle of least squares and residuals. Describe what is meant by multiple regression model.		
	Choice 2: Define regression, principle of least squares and residuals.		
	<i>Choice 2:</i> Define regression, principle of least squares and residuals.Describe what is meant by multiple regression model.Apply your understanding of nonlinear regression to fit a least-square		

Q 9	Define a Decision Tree. I one advantage and one dis			hlight	10	CO5
	Given: F-statistic for degr					
	6	9 7	7 9	-		
	8	6	13	4		
	19	4	7	4		
	12	5	8	_		
	8	4	11			
	Food 1	Food 2	Food 3			
	mean squares, for ANOV. Apply ANOVA ($\alpha = 0.0$ food on separate groups o to determine if there were weight (measured in gram groups. The data is	n goal is erage	10	CO4		
	mean squares. Identify the relevant test	ns of				
	Discuss the different kind	dom and				
Q 8	Define ANOVA and the r statistical characterization	L				
	$\begin{array}{ c c c c c c c c }\hline z & -2 & -1.9 \\ \hline p & 0.04 & 0.06 \\ \hline \end{array}$	-1.8 -1.7 0.07 0.09	-1.6-1.50.110.13	-1.4 0.16		
	Illustrate if the difference and <i>B</i> drawn from a norm deviation $\sigma = 15$ is signif 150 and $n_B = 200$, given	ard	10	CO4		
	Apply and discuss Hypot Deviations.	d				
	Remember and explain t Testing.	is				
	alternative hypothesis, sig					

Expand on the two ways in which Decision Trees can have variable selection criterion for node allocation.

Apply your understanding of the *Gini index approach* for Decision Trees to analyze 15 students' performance in an online exam. The predictors for this data-set encompass details such as whether the student is enrolled in other online courses, their academic background and whether they are currently employed or not.

	S.No.	Target Variable	F	Predictor Variable	es		
	5.110.	Result	Other Online Courses	Student Background	Working Status		
	1.	Pass	Yes	Mathematics	Not Working		
	2.	Fail	No	Mathematics	Working		
	3.	Fail	Yes	Mathematics	Working		
	4.	Pass	Yes	CS	Not Working		
	5.	Fail	No	Other	Working		
	6.	Fail	Yes	Other	Working		
	7.	Pass	Yes	Mathematics	Not Working		
	8.	Pass	Yes	CS	Not Working		
	9.	Pass	No	Mathematics	Working		
	10.	Pass	No	CS	Working		
	11.	Pass	Yes	CS	Working		
	12.	Pass	No	Mathematics	Not Working		
	13.	Fail	Yes	Other	Working		
	14.	Fail	No	Other	Not Working		
	15.	Fail	No	Mathematics	Working		
				ECTION-C 0M=40 Mark	s)		
Q 10	Define a Po	isson random	, ,	$o(\lambda)$ and high			
Q IU			lity distribution		ight the		
	enpression	or no product	ing albertoatio				
	Derive the r						
	$e^x = \sum_{n=0}^{\infty} \frac{x}{n}$						
	4	f probabilities					
	FF					20	CO3
	Define a Ga	20	0.05				
	Gamma Fun						
	Distribution						
	distribution.						
	Derive the r	mean and vari	ance of the Ga	mma Distribut	tion.		

Iden	tify the	values o	of Γ(4),	$\Gamma\left(\frac{7}{2}\right)$ ar	nd Γ(-3).					
that	Apply your understanding of cumulative distribution functions to show that $P(Y \le \lambda) = P(X \ge \alpha)$ for $X \sim Po(\lambda)$ and $Y \sim Gamma(\alpha, \beta)$, given that the cumulative distribution function for the Poisson distribution is $F(x, \lambda) = \sum_{k=0}^{x} \frac{e^{-\lambda} \lambda^{x}}{k!}$										
and	we take	$\alpha = 2, \mu$			K-0						
point Calc has I follo devia <u>Give</u> Dete that Disc High <i>Chor</i> <i>n</i> ind distr	ts of infl culate the $[Q]$ lesses w a normation (σ) ation (σ) en: The f z Value ermine a the z-sco uss same hight are idepende ibution. ice 2: Ca	lection c ne proba r than 70 rmal dis) of 15. followin -3 0.001 all IQ sc ore corre ple stati ny two p dentify t nt and ic alculate	of a norm bility th 0, given stributio g segme -2 0.023 ores that espondin stics and propertie the MoM denticall	nal distr nat a ran that the n with ent of the -1 0.159 t compr ng to z = d descri s of a ge A estima y distribuse	ibution. domly \approx i IQ sco a mean e standa 0 0.5 ise the t \approx 1.3 is be the N bod esti- ator of ti- buted sa that the	selected ores of the (μ) of the normalized normalize	student he stude 100 an al table 2 0.977 of the c of Mom sample lation pa aken fro mean h	t from U ents of U d a star 3 0.999 class, giv ents (M e statistic arameter m a Gar eight of	JPES JPES Indard	20	CO3