Name: Enrolment No:						
UPESEnd Semester Examination, December 2023						
Course: Probability and Statistics Semester: III Program: B. Tech. CSE Time: 3 hrs . Course Code: CSEG 2036P Max. Marks: 100						
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \\ \hline \end{gathered}$						
S. No.					Marks	CO
Q 1	Discuss cova variable X an for constants	andom $(+b, c)$ d.	Illustra $a c \times \mathrm{Co}$	random	4	CO2
Q 2	Define Marg marginal pro X and Y, giv \qquad \square $\begin{gathered} X=0 \\ X=1 \end{gathered}$ Identify if X	bility D ass func probab istically	s. Apply aluate th function $Y=1$ $\frac{1}{6}$ $\frac{1}{9}$ ent.	erstanding of dom variables	4	CO1
Q 3	Outline what is meant by random variables. Identify c and d if we have a random variable X with the associated probability density function, $f(x)=c x^{d-1}, 0 \leq x \leq 1$ and if the second central moment $E\left[X^{2}\right]$ is 0.6 .				4	$\begin{aligned} & \text { CO1, } \\ & \text { CO2 } \end{aligned}$

Q 4	Define sample spaces. Identify the set expression as well as Venn diagram representation for the following cases: 1. At least one of the events A, B, or C occurs 2. At most two of the events A, B, or C occur. for a sample space S and three events A, B and C.	4	CO1
Q 5	Discuss correlation coefficient. Identify $\operatorname{Var}\left(X^{\prime}\right), \operatorname{Var}\left(Y^{\prime}\right)$ and $r_{X^{\prime} Y^{\prime}}$ in terms of $\operatorname{Var}(X), \operatorname{Var}(Y)$ and $r_{X Y}$ respectively, if X is the height of students in a class in centimeters and Y is the weight of the students in kilograms, and we undertake a transformation to height in inches (X^{\prime}) and weight in pounds $\left(Y^{\prime}\right)$: $\begin{gathered} X \rightarrow X^{\prime}=0.3937 \times X \\ Y \rightarrow Y^{\prime}=2.2046 \times Y \end{gathered}$	4	CO 2
	$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M= } 40 \text { Marks) } \end{gathered}$		
Q 6	Choice 1: Define the Kruskal Wallis H Test, its null and alternate hypothesis as well as its relevant test statistic. Describe any one assumption relevant to this statistical test. Highlight how it is better than one-way ANOVA. Apply your understanding of the Kruskal Wallis H Test for analyzing the scores of three groups of students (Group A, Group B and Group C) with Given: The critical value for the H test for 2 degrees of freedom and $n_{1}=4, n_{2}=4$ and $n_{3}=4$ at $\alpha=0.05$ is 5.692 . Choice 2: Define regression, principle of least squares and residuals. Describe what is meant by multiple regression model. Apply your understanding of nonlinear regression to fit a least-square curve of the form $y=\frac{b}{x(x-a)}$ to the following data:	10	CO4

	Expand on the two ways in which Decision Trees can have variable selection criterion for node allocation. Apply your understanding of the Gini index approach for Decision Trees to analyze 15 students' performance in an online exam. The predictors for this data-set encompass details such as whether the student is enrolled in other online courses, their academic background and whether they are currently employed or not.		
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q 10	Define a Poisson random variable $X \sim \operatorname{Po}(\lambda)$ and highlight the expression for its probability distribution. Derive the mean and variance of the Poisson distribution, considering $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Show that this probability distribution satisfies the properties of probabilities. Define a Gamma Function and highlight any two properties of the Gamma Function. Expand on your understanding of the Gamma Distribution $Y \sim \operatorname{Gamma}(\alpha, \beta)$, with the expression for its probability distribution. Derive the mean and variance of the Gamma Distribution.	20	$\mathrm{CO3}$

	Identify the values of $\Gamma(4), \Gamma\left(\frac{7}{2}\right)$ and $\Gamma(-3)$. Apply your understanding of cumulative distribution functions to show that $P(Y \leq \lambda)=P(X \geq \alpha)$ for $X \sim \operatorname{Po}(\lambda)$ and $Y \sim \operatorname{Gamma}(\alpha, \beta)$, given that the cumulative distribution function for the Poisson distribution is $F(x, \lambda)=\sum_{k=0}^{x} \frac{e^{-\lambda} \lambda^{x}}{k!}$ and we take $\alpha=2, \beta=1$.		
Q 11	Define a normal distribution and a standard normal table. Derive the points of inflection of a normal distribution. Calculate the probability that a randomly selected student from UPES has IQ lesser than 70, given that the IQ scores of the students of UPES follow a normal distribution with a mean (μ) of 100 and a standard deviation (σ) of 15 . Given: The following segment of the standard normal table Determine all IQ scores that comprise the top 10% of the class, given that the z-score corresponding to $z \approx 1.3$ is 0.9 . Discuss sample statistics and describe the Method of Moments (MoM). Highlight any two properties of a good estimator in sample statistics. Choice 1: Identify the MoM estimator of the population parameters for n independent and identically distributed samples taken from a Gamma distribution. Choice 2: Calculate the probability that the sample mean height of these students (for a sample of 25 students taken from the distribution mentioned above) is greater than 106. Given: $p_{\alpha=0.05}(z=2)=0.977$.	20	CO 3

