Name: Enrolment No:		UPES UNIVERSITY OF TOMORROW		
Course Semest	End Semester Exan: Design and Analysis of Algorithm	UPES nination, December 2023	Time: 03	hrs.
Program: B.Tech (CSE-H+NH)-All Spec Course Code: CSEG2021		Max. Marks: 100		
Instruc		CTION A		
		/I=20Marks)		1
S. No.			Marks	СО
Q 1)	Consider the following function: int unknown(int n) { int i, j, k = 0; for (i = n/2; i <= n; i++) for (j = 2; j <= n; j = j * 2) k = k + n/2; return k; } What is the returned value of the above func- k = k + n/2;		4	CO1
Q 2)	Arrange the following asymptotic complex f4 in increasing order. $f1(n) = 2^n$ $f2(n) = n^{(3/2)}$ f3(n) = nLogn $f4(n) = n^{(Logn)}$	xity of functions f1, f2, f3 and	4	CO1
Q 3)	Among, Merge sort, Insertion sort, Bubble is the best in the worst case. Support your a analysis.		4	CO2
Q 4)	Consider the equality $\sum_{i=0}^{n} i^{3} = X$ and the following choices for X: I. $\Theta(n^{4})$ II. $\Theta(n^{5})$ III. $O(n^{5})$ IV. $\Omega(n^{3})$		4	CO1

	Which of the above choices are correct in replacement of X to make the equality correct?		
Q 5)	Consider the recurrence function and calculate $T(n)$ in terms of Θ notation using Master's theorem.		
	$T(n) = \begin{cases} 2T(\sqrt{n}) + 1, & n > 2\\ 2, & 0 < n \le 2 \end{cases}$	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		-
Q 6)	 Discuss N-queen problem. Illustrate the solution of 4-Queens problem using backtracking. What is the time complexity of the algorithm? OR Is counting sort a comparison based sorting technique? Justify your answer with the help of an example. Discuss its time and space complexity. 	10	C05
Q 7)	Explain the P, NP, NP-hard, NP-complete classes? Give relationship between them?	10	CO6
Q 8)	 Suppose you are choosing between the following of three algorithms: a. Algorithm A solves problems by dividing them into five sub problems of half the size, recursively solving each problem, and then combining the solution in linear time. b. Algorithm B solve the problems of size n by recursively solving two sub-problems of size n-1 and then combining the solutions in constant time. c. Algorithm C solves problems of size n by dividing them into nine sub problems of size n/3, recursively solving each problem, and then combining the solutions in O(n²) time. 	10	CO2
	What are the running times of each of three algorithms (in big-oh notation), and which would you choose?		
Q 9)	Consider the following graph:	10	CO3

Find the minimum spanning	g tree using Kruskal's Algorithm.		
matrix G_2 of dimension Computing the product of parenthesizing in difference computed pair for a give multiplied. For examples $G_1G_2G_3G_4G_5G_6$ using G_2G_3 and G_5G_6 are only exe Consider a matrix multip F_1,F_2,F_3,F_4 and F_5 are of 1×1000 , respectively. In minimizes the total number explicitly computed pair(se scalar multiplications requeres parenthesis sequence of complexity of matrix programming? Consider two strings X=al common subsequence (not pair)	(2Qx20M=40 Marks) a matrix G ₁ of dimension p×q with another q×r requires pqr scalar multiplications. n matrices G ₁ G ₂ G ₃ G _n can be done by ent ways. Define G _i G _{i+1} as an explicitly en paranthesization if they are directly e, in the matrix multiplication chain parenthesization (G ₁ (G ₂ G ₃))(G ₄ (G ₅ G ₆)), plicitly computed pairs. lication chain F ₁ F ₂ F ₃ F ₄ F ₅ , where matrices f dimensions $2\times25, 25\times3, 3\times16, 16\times1$ and the parenthesization of F ₁ F ₂ F ₃ F ₄ F ₅ that per of scalar multiplications, calculate the b). Also, find out the minimum number of ired to solve the given problem and optimal matrices. What is the time and space chain multiplication using dynamic OR bacc and Y=babcacb. Let P be the longest necessarily contiguous) between X and Y and h longest common subsequences between X	20	CO4
and Y. Calculate 10P+Q us and space complexity.Q 11)Illustrate the working of H given graph. Discuss the Shortest Path Algorithm. W	Sing dynamic programming. Discuss its time Bellman Ford Shortest Path Algorithm on a drawback of Bellman Ford Single Source /hat is the time complexity of Bellman Ford, ete and consists of n vertices?	20	CO3

