Name: Enrolment No:		YUPES	
UPESEnd Semester Examination, December 2023			
Course: Computer Graphics Program: MCA Course Code: CSEG8005		Semester: III Time : 03 hrs . Max. Marks: 100	
Instructions: Attempt all Questions			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Compare Liang Barsky Algorithm with Cohen Sutherland Algorithm.	04	CO1
Q 2	Illustrate shadow mask CRT. Give its advantages and disadvantages.	04	CO2
Q 3	Compare Raster Scan and Random Scan Display.	04	CO3
Q 4	State the names of different color models in Computer Graphics. Illustrate any one of them briefly.	04	CO4
Q 5	Show that the composition of two rotation is additive by concatenating the matrix representation for $\mathrm{R}(\Theta 1)$ and $\mathrm{R}(\Theta 2)$.	04	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Illustrate Mid-Point Ellipse Algorithm (Mention the steps). Given an ellipse with $\mathrm{r}_{\mathrm{x}}=8$ and $\mathrm{r}_{\mathrm{y}}=6$. Calculate the next points of region 1 .	10	CO1
Q 7	Illustrate affine transformations in 2 D Geometry with suitable equations and diagrams. Rotate a triangle A $(0,0), \mathrm{B}(2,2), \mathrm{C}(4,2)$ about the origin and about $\mathrm{P}(-2,-2)$ by an angle of 45°.	10	CO2
Q 8	Illustrate the different phases of Cohen-Sutherland Line Clipping Algorithm. Use the Cohen Sutherland algorithm to clip line P1 (70, 20) and P2 $(100,10)$ against a window lower left-hand corner $(50,10)$ and upper right-hand corner $(80,40)$.	10	$\mathrm{CO3}$

	OR		
Q 8	Illustrate the steps for Sutherland Hodgeman Polygon Clipping Algorithm. Clip the following figure with Sutherland Hodgeman algorithm.	10	$\mathrm{CO3}$
Q 9	Derive the parametric equation for Beizer Curve. Construct the Beizer Curve of order 3 with four vertices of control polygon $\mathrm{P}_{0}(0,0), \mathrm{P}_{1}(1,2)$, $P_{2}(3,2)$ and $P_{3}(2,0)$. Generate at least 5 points on the curve.	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	A solid tetrahedron is given by position vectors $\mathrm{A}(1,1,1), \mathrm{B}(3,1,1), \mathrm{C}$ $(2,1,3)$ and $\mathrm{D}(2,2,2)$ and a point light source is kept at $\mathrm{P}(2,3,4)$. Using the Back Face detection method, find the surfaces on which light falls and the surfaces which are to be shadowed.	20	$\mathrm{CO5}$
Q 11	(a) Demonstrate Z buffer algorithm (do include diagrammatic representation) along-with its advantages and disadvantages. (b) Mention Illumination model with proper equations. Derive the mathematical equation for Gouraud Shading. Compare its advantages and disadvantages over Phong Shading.	20	CO1
	OR		
	(a) Mention Translation, Rotation, Scaling and Reflection for a 3D Coordinate System with suitable diagrams and matrix representations. (b) Consider a region defined by a position vector P .	20	CO1

\(\left.\begin{array}{|l|ll|l|l|}\hline \& {\left[\begin{array}{lll}1 \& 1 \& 2 \\
2 \& 1 \& \\
2 \& 2 \& 2 \\
1 \& 1 \\

1 \& 2 \& 1\end{array}\right]}\end{array}\right]\)| Relative to global axis XYZ system. It is rotated by an angle of |
| :--- |
| 30 degrees about x axis and passed through point (1.5,1.5,1.5). |
| Find the final position of the region. |

