Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: BCA Program: Basic Mathematics Course Code: MATH 1058 Semester: I Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Convert 278 into a binary number.	4	C01	
Q 2	Solve the quadratic equation $2x^2 + x - 528 = 0$.	4	CO1	
Q 3	Find the polar coordinates where the cartesian coordinates are $(0, 1/2)$.	4	CO3	
Q 4	Evaluate $\int sinx sin(cosx) dx$.	4	CO2	
Q 5	Derive the equation of tangent at (x_1, y_1) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	4	CO3	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	i) If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots \cos x}}}}$, then prove that $\frac{dy}{dx} = \frac{\cos x}{(2y-1)}$. ii) If $z = x^4 + y^4 + 3x^2y^2$, then find the value of $\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$.	10	CO2	
Q 7	Calculate the differential coefficient of (i) e^{sinx^2} (ii) $\log sinx^2$ with respect to x .	10	CO2	
Q 8	Given $\mathcal{R} = t^m A + t^n B$, where A, B are constant vectors, show that, if \mathcal{R} and $\frac{d^2 \mathcal{R}}{dt^2}$ are parallel vectors, then $m + n = 1$, unless $m = n$.	10	CO3	
Q 9	Find the area of a plate in the form of a quadrant of the circle $x^2 + y^2 = a^2$. OR Evaluate the integral $\int \frac{3x+5}{x^3-x^2-x+1} dx$.	10	CO2	

	SECTION-C					
(2Qx20M=40 Marks)						
Q 10	A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of ₹ 35 per package of nuts and ₹ 14 per package of bolts. How many packages of each should be produced each day to maximize his profit, if he operates each machine for at most 12 hours a day? Convert it into a linear programming problem and solve graphically.	20	CO4			
Q 11	 a) Under what condition the straight-line y = mx + c may be a tangent to the ellipse x²/a² + y²/b² = 1. b) Evaluate the volume of a parallelepiped whose coterminous edges are î - ĵ + k̂, 2î + 3ĵ - k̂, and -î - ĵ + 5k̂. OR a) Under what condition the straight-line y = mx + c may be a tangent to the parabola y² = 4ax. b) Let a = î + ĵ + k̂, b = î and c = c₁î + c₂ĵ + c₃k̂. If c₁ = 1 and c₂ = 2, find c₃ such that a, b and c are coplanar. 	20	CO3			