Name: Enrolment No:		S		
Program: B. Tech. CSE			Semester: I Time : 03 hrs. Max. Marks: 100 tempt all questions from	
	B (Each carrying 10 marks) and attempt all con 7 and 10 have internal choice. SECTION (5Qx4M=2)	ON A	each carrying	20 marks).
S. No.			Marks	СО
Q 1	Compute the partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ at the point (1,2), where $u(x,y) = \log_e(x^2 + y^2)$.		4	CO1
Q 2	Evaluate the integral $\int_0^2 \int_{\sqrt{2x}}^2 \left(\frac{y}{\sqrt{x^2+y^2+1}}\right) dy dx.$		4	CO2
Q 3	Define divergence and curl of a vector point function.		4	CO3
Q 4	When a switch is closed in circuit containing a battery <i>E</i> , a resistor <i>R</i> and an inductance <i>L</i> , the current <i>i</i> builds up at a rate given by $L\frac{di}{dt} + Ri = E.$		4	CO4
Q 5	Determine <i>i</i> as a function of <i>t</i> . Find the general solution of the differential eq $(D^2 + 5D + 6)y = 0 (D \text{ stan})$	_	4	CO4
	SECTION (40x10M-			•
Q 6	(4Qx10M=4) If $u = x + 2y + z$, $v = x - 2y + 3z$, $w = 2x$ find the Jacobian of u , v , w with respect to x .	$xy - xz + 4yz - 2z^3$, then	10	C01
Q 7	Change the order of integration and hen $\int_0^a \int_0^y \left(\frac{x}{\sqrt{(a^2 - x^2)(y - x)(a - y)}} \right) dx dy \ (a > 0).$	ce evaluate the integral		
	OR Define Beta function. Using Beta and Gammintegral $\int_{-1}^{1} (1 - x^2)^n dx$, where <i>n</i> is a positive		10	CO2

Q 8	Show that the following differential equation		
	$(x^4 - 2xy^2 + y^4)dx - (2x^2y - 4xy^3 + \sin y)dy = 0,$	10	CO4
	is exact and hence solve it.		
Q 9	A competitive interaction is described by the Lotka-Volterra competition model		
	x' = 0.01x(100 - x - y), y' = 0.05y(60 - y - 0.2x). 10		CO5
	Find all critical points of the system.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	 (i) Find <i>curl(curl Ā</i>), if <i>Ā</i> = x²y î - 2xz ĵ + 2yz k̂ at the point (1,0,2). (ii) Find the directional derivative of φ = xy² + yz² at the point (2,-1,1) in the direction of the vector î + 2ĵ + 2k̂. 		
	OR	20	CO3
	State Green's theorem. Verify Green's theorem for $\oint_C [(x^2 - 2xy)dx + (x^2y + 3)dy]$ where <i>C</i> is the boundary of the region bounded by the parabola $y = x^2$ and the line $y = x$.		
Q 11	 (i) Apply the method of variation of parameters to solve the following differential equation: 		
	$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = x + \cos x.$	10+10	CO4
	(ii) Find the general solution of the following differential equation:		
	$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = (2023)^x - \log_e(2024).$		