Name: Enrolment No:			
Cours Progr Cours Instru Sectio Questi	UPES \quadEnd Semester Examination, December 2023 Advanced Engineering Mathematics-I B. Tech. CSE Code: MATH1059	mester: me ax. Mar pt all q carryin	hrs. 0 ns fro marks
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Compute the partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ at the point $(1,2)$, where $u(x, y)=\log _{e}\left(x^{2}+y^{2}\right)$.	4	CO1
Q 2	Evaluate the integral $\int_{0}^{2} \int_{\sqrt{2 x}}^{2}\left(\frac{y}{\sqrt{x^{2}+y^{2}+1}}\right) d y d x$.	4	CO 2
Q 3	Define divergence and curl of a vector point function.	4	CO 3
Q 4	When a switch is closed in circuit containing a battery E, a resistor R and an inductance L, the current i builds up at a rate given by $L \frac{d i}{d t}+R i=E$ Determine i as a function of t.	4	CO4
Q 5	Find the general solution of the differential equation $\left(D^{2}+5 D+6\right) y=0\left(D \text { stands for } \frac{d}{d x}\right)$	4	CO4
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	If $u=x+2 y+z, v=x-2 y+3 z, w=2 x y-x z+4 y z-2 z^{3}$, then find the Jacobian of u, v, w with respect to x, y, z.	10	CO1
Q 7	Change the order of integration and hence evaluate the integral $\int_{0}^{a} \int_{0}^{y}\left(\frac{x}{\sqrt{\left(a^{2}-x^{2}\right)(y-x)(a-y)}}\right) d x d y(a>0)$. OR Define Beta function. Using Beta and Gamma functions evaluate the integral $\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x$, where n is a positive integer.	10	CO 2

Q 8	Show that the following differential equation $\left(x^{4}-2 x y^{2}+y^{4}\right) d x-\left(2 x^{2} y-4 x y^{3}+\sin y\right) d y=0$ is exact and hence solve it.	10	CO 4
Q 9	A competitive interaction is described by the Lotka-Volterra competition model $\begin{aligned} x^{\prime} & =0.01 x(100-x-y) \\ y^{\prime} & =0.05 y(60-y-0.2 x) \end{aligned}$ Find all critical points of the system.	10	CO5
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	(i) Find $\operatorname{curl}(\operatorname{curl} \bar{A})$, if $\bar{A}=x^{2} y \hat{\imath}-2 x z \hat{\jmath}+2 y z \hat{k}$ at the point $(1,0,2)$. (ii) Find the directional derivative of $\phi=x y^{2}+y z^{2}$ at the point $(2,-1,1)$ in the direction of the vector $\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$. OR State Green's theorem. Verify Green's theorem for $\oint_{C}\left[\left(x^{2}-2 x y\right) d x+\right.$ $\left.\left(x^{2} y+3\right) d y\right]$ where C is the boundary of the region bounded by the parabola $y=x^{2}$ and the line $y=x$.	20	CO 3
Q 11	(i) Apply the method of variation of parameters to solve the following differential equation: $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=x+\cos x$ (ii) Find the general solution of the following differential equation: $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=(2023)^{x}-\log _{e}(2024)$	10+10	CO 4

