Name: Enrolment No:		UUPEXS	
UPES End Semester Examination, December 2023			
Program Name: B.Sc. Computer Science Course Name: Mathematical Sciences-I Course Code: MATH-1060		Semester : ITime : $\mathbf{3} \mathbf{~ h r s}$Max. Marks $: \mathbf{1 0 0}$	
Nos. of page(s): 2			
Instructions:			
1. Section A has 5 questions. All questions are compulsory.			
2. Section B has 4 questions. All questions are compulsory. Question 9 has internal choice to attempt any one.			
3. Section C has 2 questions. All questions are compulsory. Question 11 has internal choice to attempt any one.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Prove that $\int_{0}^{3} \int_{1}^{2} x y(1+x+y) d y d x=\int_{1}^{2} \int_{0}^{3} x y(1+x+y) d x d y$	4	CO1
Q 2	Expand $\log x$ in powers of $(x-1)$.	4	CO1
Q 3	Find the divergence and curl of $\vec{F}=e^{x y z}\left(x y^{2} \hat{\imath}+y z^{2} \hat{\jmath}+z x^{2} \hat{k}\right)$ at $(1,2,3)$.	4	CO2
Q 4	Solve ($\left.D^{2}+6 D+9\right) y=5 e^{3 x}$.	4	CO3
Q 5	Determine the solution of $a_{n}=4\left(a_{n-1}-a_{n-2}\right), n \geq 2$.	4	CO4
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	If $u(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{m / 2}$, then find the value of m which will make $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$.	10	CO1
Q 7	Evaluate $\iint \sqrt{4 x^{2}-y^{2}} d x d y$ over the triangle bounded by $y=0, y=x$ and $x=1$.	10	CO1
Q 8	If $\vec{A}=\left(3 x^{2}+6 y\right) \hat{\imath}-14 y z \hat{\jmath}+20 x z^{2} \hat{k}$, evaluate $\int_{C} \vec{A}$. $d \vec{r}$, where C is the curve $x=t, y=t^{2}, z=t^{3}$ from $(0,0,0)$ to $(1,1,1)$.	10	$\mathrm{CO2}$
Q 9	Find the solution of $\left(D^{3}-3 D^{2}+4 D-2\right) y=e^{x}+\cos x$ OR Solve the following exact differential equation: $(a x+h y+g) d x+(h x+b y+f) d y=0$	10	$\mathrm{CO3}$

$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \\ \hline \end{gathered}$			
Q 10	Solve the equation $a_{n+2}-4 a_{n+1}+4 a_{n}=2^{n}, a_{0}=0, a_{1}=1$.	20	CO4
Q 11	Solve $\frac{d^{2} y}{d x^{2}}+y=\sec x$ using method of variation of parameter. OR Given that $y=e^{x}$ is a solution, determine the solution of $x y^{\prime \prime}-(2 x-1) y^{\prime}+(x-1) y=0$	20	$\mathrm{CO3}$

