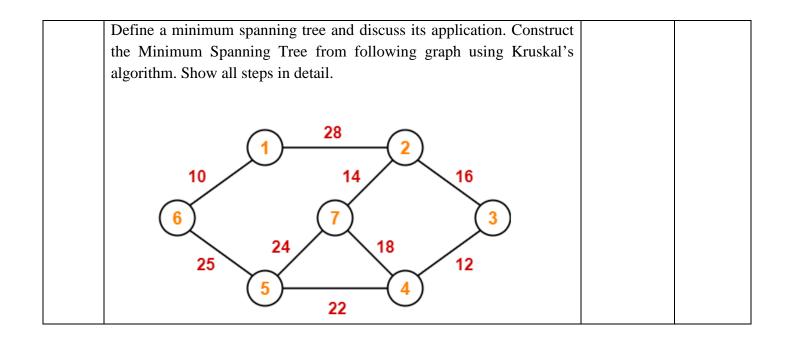
Name:

Enrolment No:


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2023

Course: Data Structures Program: MCA Course Code: CSEG7015 Semester : I Time : 03 hrs. Max. Marks : 100

Instructions: Read and follow the instructions written on the answer sheet front page

(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Explain the concept of hashing. Discuss how collision can be handled in a hash table?	4	CO1	
Q 2	Write the algorithm for selection sort.	4	CO1	
Q 3	Write the output of the following code: #include <stdio.h> main() { int a[]={1,2,3,4,5}; printf("%d%d%d%d%d",*a,*(a+0),*(0+a),a[0]); }</stdio.h>	4	CO2	
Q 4	Write a C function for implementing enqueue operation in a queue using array.	4	CO4	
Q 5	<pre>void abc(struct node *new1){ temp = head; if(head == NULL) head = new1; else{ while(temp->next!= NULL) temp = temp->next; new1->prev = temp; temp->next = new1; } }</pre>	4	CO3	

	What will the above function do?		
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Create an AVL tree for the following sequence K, T, E, V, P, A, M, N, B.	10	CO2
Q 7	Discuss the definition and properties of a BST. Write the algorithm for deleting a node in BST.	10	CO1
Q 8	Differentiate between linear and binary search and state which one is more efficient. Also, write algorithms for both.	10	CO3
Q 9	Write C functions for implementing Push and Pop operations in a stack using linked list. Given Expression is 5*((-3-2)*(4-6)+3*2). Write algorithm and draw stack diagrams to evaluate the given expression. 	10	CO1
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Differentiate between linear and non-linear data structures with appropriate examples.Write C functions to perform the following actions:a) Creation of a doubly circular linked list. b) Insertion at the beginning of a doubly linked list. c) Deleting a particular element in a singly linked list.	20	CO3
Q 11	Write the algorithms for BFS and DFS. For the following Graph, give the traversal order with appropriate steps using BFS and DFS:	20	CO4

