Name:				
Enrolm				
	UPES End Semester Examination D	acambar 2023		
Program: BSC (CS)Time: 03 hCourse Code: ECEG 1010Max. MarkInstructions: Attempt all the questionsMax. Mark		Semester: I Time: 03 hrs. Max. Marks: 100		
	SECTION A (5Qx4M=20Marks	5)		
S. No.		Marks	СО	
Q 1	What do you understand by Universal gates? Design and Implement Ex-OR and AND gates using NAND gate.		CO1	
Q 2	Differentiate the following (a) Decoder and Demultiplexer (b) Combinational and Sequential circuits		CO1	
Q 3	Simplify the Boolean expression using K-map $F(A, B, C, D) = \sum (1, 2, 4, 5, 6, 8, 9, 12)$		CO2	
Q 4	Design and implement Full Adder with its truth table and logic diagram.		CO3	
Q 5	Convert the following: (a) $(348.65)_{10}$ to hexadecimal (b) $(461.47)_8$	to decimal 4	CO4	
	SECTION B (4Qx10M= 40 Mar	KS)		
Q 6	What do you understand by registers? Discuss with suitable logic diagram all the four configuration SISO, SIPO, PISO, PIPO of registers.		CO5	
Q 7	Simplify the expression $F(A, B, C, D) = M(1, 3, 5, 8, 9, 11, 14) + d(2, 7, 10)$ using K-map and implement the result using logic gates.		CO2	
Q 8	Derive an expression for any two seven segments using BCD to 7-segment decoding technique and draw its diagram and K-map.		CO3	
Q 9	Design and implement T flip-flop using S-R flip-flop wi	th excitation table. 10	CO4	
	SECTION-C (2Qx20M=40 Mark	(s)		
Q 10	(a) Explain the function of multiplexer with its detailed following function using 8×1 Multiplexer F (A, B, C, D) = Σ (1, 3, 4, 7, 9, 11, 13, 15)	diagram and implement the 20	C01	

	(b) Discuss the following codes in detail		
	i. Error detecting codes		
	ii. Error correcting or Hamming codes		
	iii. Weighted binary codes		
	iv. Non-weighted codes		
	v. Alphanumeric codes		
Q 11	(a) Classify flip-flops in detail and design a J-K flip flop using NAND gates with		
	its truth table, state diagram, excitation table and implement the expression	20	CO4
	for next state output with the help of K-map.	20	
	(b) Design a master-slave J-K flip flop and verify the race-around condition.		