Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Predictive Modelling Program: M. Tech. (CSE) Course Code: CSDA7002P

Semester: I Time : 03 hours Max. Marks: 100

Instructions: Attempt all the questions.

	SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО		
Q1	In a multiple regression analysis involving 12 independent variables and 142 observations, $SSR = 884$ and $SSE = 178$. Calculate the coefficient of determination. How much variation in the dependent variable is explained by the independent variables in the model?	4	CO1		
Q2	The relationship between number of beers consumed (x) and blood alcohol content (y) was studied in 28 male college students by using least squares regression. The following regression equation was obtained from this study: y=-0.0234 + 0.0360x What does the above equation imply. How does the coefficient 0.0360 in the regression equation reflect the impact of a one-unit change in the number of beers consumed on blood alcohol content?	4	CO2		
Q3	In the context of linear regression, suppose you have fitted a model to predict house prices based on various features such as square footage, number of bedrooms, and location. Upon examining the residuals, you observe the presence of outliers. Discuss the potential implications of these outliers on your regression analysis. Specifically, address how outliers can affect the model's predictive accuracy, the estimates of regression coefficients, and the assumptions underlying linear regression. Furthermore, propose and explain at least two strategies you would consider employing to manage or address the impact of outliers in this regression analysis, taking into account the potential consequences of outlier removal on the overall validity and reliability of the model.	4	CO3		
Q4	Explain the difference between R-squared and adjusted R-squared in regression models.	4	CO4		
Q5	Consider the estimated regression equation: $\hat{y} = 3536 + 1183X_1 - 1208X_2$. Suppose the model is changed to reflect the deletion of X_2 and the resulting estimated simple linear equation becomes $\hat{y}=-10663 + 1386X_1$. a) How should we interpret the meaning of the coefficient on X_1 in the estimated simple linear regression equation $\hat{y}=-10663 + 1386X_1$?	4	CO2		

	b) How should we interpret the meaning of the coefficient on X1 in the		
	estimated multiple regression equation $\hat{y}=3536 + 1183X_1 - 1208X_2$?		
	SECTION B		
	(4Qx10M= 40 Marks)		
Q6	Derive the slope and intercept of linear regression using Ordinary Least Square fitting.	10	CO1
Q7	Discuss the impact of multicollinearity on regression analysis. In a multiple regression model, you observe high multicollinearity among certain predictors. Discuss two methods or techniques that can be employed to handle or reduce the impact of multicollinearity in regression analysis.	10	CO2
Q8	Describe the concepts of autocorrelation, normality, and homoscedasticity in the context of regression analysis. How do violations of these assumptions impact the validity of regression models? Given a regression model $Y=2X-1$, and the data points (1, 1), (2, 3), (3, 5), (4, 8), calculate the residuals. Assess the presence of any patterns or deviations from the assumptions of autocorrelation in the residuals using Durbin Watson statistic.	10	CO4
Q9	In a regression analysis with 60 observations and 10 independent variables, if SSR = 500 and $SSE = 300$, perform the F-test to determine whether all regression parameters are simultaneously zero at the 0.05 significance level. If you assume the F-critical value for a 0.05 significance level to be 2.15, calculate the F-statistic and interpret whether the null hypothesis should be rejected. OR Prove that slope of linear regression model is equal to $Cov(X,Y)/V(X)$. Where X is independent variable and Y is dependent variable.	10	CO4
	SECTION-C		
	SECTION-C (2Qx20M=40 Marks)		
Q10	(2Qx20M=40 Marks) Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:		
Q10	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft)BedroomsHouse Prices (in Rs.)		
Q10	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft)BedroomsHouse Prices (in Rs.)15003350,000		
Q10	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft) BedroomsHouse Prices (in Rs.)15003350,00018004420,000	20	 CO3
Q10	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft) BedroomsHouse Size (sq. ft)BedroomsHouse Prices (in Rs.)15003350,00018004420,00020003380,000	20	CO3
Q10	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft)BedroomsHouse Prices (in Rs.)15003350,00018004420,00020003380,00014002300,000	20	CO3
Q10	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft)BedroomsHouse Prices (in Rs.)15003350,00018004420,00020003380,00014002300,00025005500,000Perform multiple linear regression by hand using matrix methods to predict	20	CO3
Q10	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft) BedroomsHouse Size (sq. ft)BedroomsHouse Prices (in Rs.)15003350,00018004420,00020003380,00014002300,00025005500,000Perform multiple linear regression by hand using matrix methods to predict house prices based on the house size, number of bedrooms, and distance to the	20	CO3
	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft)BedroomsHouse Prices (in Rs.)15003350,00018004420,00020003380,00014002300,00025005500,000Perform multiple linear regression by hand using matrix methods to predict house prices based on the house size, number of bedrooms, and distance to the city center.	20	CO3
Q10 Q11	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft) BedroomsHouse Size (sq. ft)BedroomsHouse Prices (in Rs.)15003350,00018004420,00020003380,00014002300,00025005500,000Perform multiple linear regression by hand using matrix methods to predict house prices based on the house size, number of bedrooms, and distance to the	20	CO3
	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft) Bedrooms House Prices (in Rs.)15003350,00018004420,00020003380,00014002300,00025005500,000Perform multiple linear regression by hand using matrix methods to predict house prices based on the house size, number of bedrooms, and distance to the city center.Analyze a dataset that includes study hours and final exam scores:	20	CO3
	(2Qx20M=40 Marks)Consider a dataset involving housing prices based on the size of the house, number of bedrooms, and the distance to the city center. The dataset includes:House Size (sq. ft)BedroomsHouse Prices (in Rs.)15003350,00018004420,00020003380,00014002300,00025005500,000Perform multiple linear regression by hand using matrix methods to predict house prices based on the house size, number of bedrooms, and distance to the city center.Analyze a dataset that includes study hours and final exam scores:Study HoursFinal Exam Scores		

3	80			
7	85			
a) Perform a correlation analysis to determine the relationship strength				
between study hours and final coefficient.	exam scores. Interpret the obtained corre	elation		
b) Apply simple linear regressi scores based on study hours.	on using matrix methods to predict final	l exam		
•	rms of Mean Squared Error (MSE).			
c) Calculate the residuals in ter	OR			
sales, there's a data point with	ationship between temperature and ice h an unusually high temperature (an or	utlier).		
nalyze the impact of this outlier on the simple linear regression model built				
	Discuss the effect on the regression li	ne, R-		
squared value, and the model's				
Temperature (°C)	Ice Cream Sales			
15	20			
20	25			
25	30			
30	35			
35	40			
50	60			
1 1	ratures in Celsius and the correspondi	•		
• •	netical context. All values follow a	linear		
relationship except for the last	entry, which represents the outlier.			