Name:	
Enrolment No:	

Time: 03 Hours

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Supplementary Examination, December-23

Course: Mathematical Economics-I Program: BA, Economics (Hons.)

Semester: III Course code: ECON2026

Max. Marks: 100

SECTION A

- 1. Each Question will carry 2 Marks
- 2. Instruction: Select the correct answer(s)

		CO
Q1	Find the domains of the functions defined by the following equations: a. $y = \sqrt{5-x}$ b. $y = \frac{2x-1}{x^2-x}$ c. $y = \sqrt{\frac{x-1}{(x-2)(x+3)}}$ d. $y = \frac{3x+6}{x-2}$ e. $y = \frac{3x+6}{x-2}$ Find the derivative of each of the following functions: a. $y = x^{1/2}$ b. $y = 63$ c. $y = 7x^5$ d. $w = 3u^{-1}$ e. $w = -4u^{\frac{1}{2}}$	CO1
	CE CONTON D	

SECTION B

- 1. Each question will carry 5 marks
- 2. Instruction: Write short / brief notes

Q11.	Find the equilibrium price and quantity for the following.		
	a. $D = 60 - 4P$, $S = -10 + P$	CO2	
	b. $D = 200 - 1/2P$, $S = -100 + 1/2P$		
Q12.	Compute the following limits:		
	a. $\lim_{x\to 2}(x^2+3x-5)$	CO2	
	b. $\lim_{v \to -1} (3v + 5/v + 2)$		
Q13.	Compute the following:		
	$\begin{bmatrix} u & v & w \end{bmatrix}$	CO2	
	$\begin{vmatrix} u & v & w \\ 0 & x & y \\ 0 & 0 & z \end{vmatrix}$	CO2	
	10 0 Z1		
Q14.	Find $\frac{d^2y}{dx^2}$ when $y = x^{2a} + x^{-2a}$	CO2	
	CECTION C		

SECTION-C

1. Each Question carries 10 Marks.

2. Instru	uction: Write long answer	
Q 15.	For the following equations, find $\frac{dy}{dx}$ by implicit differentiation: a. $3y + 12x + 17 = 0$ b. $x^2 + 6x - 13 - y = 0$ c. $y^6 = x^5$ d. $2x^2 + 6xy + y^2 = 18$	CO3
Q16.	Find the extreme value (s) of the following functions, and determine whether they are maxima or minima: a. $C = L^2 + LK + 2K^2 + 3$ b. $Q = -L^2 - K^2 + 6L + 2K$	CO3
Q17.	 Given Q = LK + L + 2K + 2 and P_L = 4, P_K = 6 and C = 130: a. Write the Lagrangian function. b. Find the optimal levels of purchase L* and K*? c. Is the second-order sufficient condition for maximum satisfied? 	CO3
1. Each	SECTION-D Question carries 15 Marks.	
	Use Cramer's rule to solve the following system of equations:	
	a. $x_1 - x_2 + x_3 = 2$ $x_1 + x_2 - x_3 = 0$ $-x_1 - x_2 - x_3 = -6$ b. $x + 3y - 2z = 1$ 3x - 2y + 5z = 14 c. $2x - 5y + 3z = 1$	CO4
Q19	Let the <i>IS</i> equation be $Y = \frac{A}{1-b} - \frac{g}{1-b}i$ Where $1-b$ is the marginal propensity to save, g is investment sensitivity to interest rates, and A is an aggregate of exogenous variables. Let the <i>LM</i> equation be $Y = \frac{M_0}{k} + \frac{l}{k}i$ Where k and l are income and interest sensitivity of money demand, respectively, and M_0 is the real money balances. If $b = 0.7$, $g = 100$, $A = 252$, $k = 0.25$, $l = 200$, and $M_0 = 176$, then a. Write the $lS - LM$ system in matrix form. b. Solve for Y and i by matrix inversion.	CO4