Name:

Enrolment

No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

ODD_Supple Examination, December 2023

Course: Operations Research **Program:** BBA All Course Code: DSQT2006 Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions

	SECTION A 10Qx2M=20Marks		
S. No.		Marks	CO
1	Which among the following costs is the expense of storing inventory		
	for a specified period of time?	2	CO1
	(a) Financial cost		
	(b) Storing cost		
	(c) Carrying cost		
	(d) Purchasing cost		
2	If the Minimax are (10,18,16) and Maximin are (8,10,7). The saddle		
	point is	2	CO1
	(a) 7		
	(b) 10		
	(c) 18		
	(d) 8		
3	A given TP is said to be unbalanced, if the total supply is not equal to		
	the total	2	CO1
	(a) Optimization	2	01
	(b) Demand		
	(c) Cost		
	(d) None of the above		
4	Which technique is used in finding a solution for optimizing a given objective, such as profit maximization or cost reduction under certain constraints?		
	(a) Queuing theory(b) Network analysis(c) Linear programming	2	CO1
	(d) Intuitive		

5	 are the restrictions or limitations imposed on the LPP. (a) objective function (b) variables (c) constraints (d) profit 	2	CO1
6	 In standard of LPP, the constraint X + Y + Z = 40 then Z is said to be (a) Slack variable (b) Surplus variable (c) Artificial variable (d) None 	2	CO1
7	 The set of values of the decision variables X₁, X₂,, X_n satisfying the constraints and non-negativity restrictions of the problem is called (a) Optimal solution (b) Feasible solution (c) Bounded solution (d) Unbounded solution 	2	CO1
8	 The transportation problem deals with the transportation of (a) Single product from a source to several destinations (b) Several products from a source to a destination (c) Single product from several sources to a destination (d) Several products from several sources to several destinations 	2	CO1
9	In least cost method first allocation is made at (a) Lower right corner of the table (b) Upper right corner of the table (c) Highest costly cell of the table (d) None of the above	2	CO1
10	The method used for solving an assignment problem is called (a) Simplex method (b) Big-M method (c) Least cost method (d) Hungerian method	2	CO1

			CTION B M= 20 Mar	ks			
		TQAC	20 Mai	K			
11	Discuss the simulation	along with	h its applica	bility. Also	discuss its	5	CO2
	advantages and disadvar	ntages.					
12	Define EOQ, Ordering	and Holdin	g cost.			5	CO2
13	Explain the assumption	ns in linear	programmin	g problem.		5	CO2
14	The matrix given below B areassumed to be equ of strategy 1 or strateg 2. Find the value of the B.	ual in abilit y 2, while	y and intelli B can select optimum stra	gence. A has strategy 1 or	a choice strategy	5	CO2
	A's	Al	4	6			
	strategy	A2	3	5			
			CTION-C 0M=30 Ma	rks			

	best strategy	for playe	er A and	В.						
			.		Pla	yer B			10	CO3
			itegy	B1	B2	B3		B4		
			1	-5	-3	0		4		
	Pla		12	5	6	4		8		
	A		A3 A4	4 3	0	2		-3 8		
			14	5	0	1.5		<u> </u>		
6	Suppose an	industry	is manu	ıfacturir	ng two t	vnes of	² produc	ets P1 and P2.	10	CO3
		•			-		-) respectively.	10	
								nachines. The		
								v and the time		
	required on e	each mac	hine to p	produce	one Kg	of P1 a	nd P2.			
	Profit/l	хg	P1		P2		Total			
								ability		
			-				hours	/day		
	Machin		2		3		600			
	Machin Machin		4 2		2 3		800 1100			
	Widelin		2		5		1100			
	a. Formu b. Form					inear pi	ogramn	ning model.		
7	Solve the fol	llowing a	ssignme	nt prob	lem usin	g Hung	arian M	ethod. The		
	matrix entrie	es are pro	cessing	times ir	n hours.					
		T - la			Operat	or				
		Job	01	0	02	O3	O4		10	
		J1	2	1	10	9	7		10	CO3
		J2	15		4	14	8			
		J3	13	1	14	16	11			
		J4	3	1	15	13	8			
				20	SECT Qx15M=	'ION-D = 30 Ma				

	G		Dest	ination				
	Source	А	В	С	D	Supply	15	CO4
	Ι	3	1	7	4	300	15	CO4
	II	2	6	5	9	400		
	III	8	3	3	2	500		
	Demand	400	200	250	350			
	optimal solutio					n and obtain tion method.		
t	optimal solution The following the best course of (a) Maximin cr	able repres of action us iterion (b)	cost method a ent Course o sing the follo Maximax cr	f actions and wing criteric iterion (c) S	Approximate states of n n. avage mini	tion method. ature. Find max regret		
t	optimal solution The following the best course of (a) Maximin criterion (d)	able repres of action us iterion (b) Laplace cr	cost method a ent Course o sing the follo Maximax cr iterion. (e) H	f actions and wing criteric iterion (c) S Iurwicz crite	Approximates of n states of n n. avage mini rion (Alpha	tion method. ature. Find max regret		
t	optimal solution The following the best course of (a) Maximin criterion (d)	able repres of action us iterion (b) Laplace cr	ent Course o sing the follo Maximax cr iterion. (e) H	f actions and wing criteric iterion (c) S Iurwicz crite	Approximates of n states of n n. avage mini cion (Alpha ure	tion method. ature. Find max regret a = 0.5)	15	CO4
t	optimal solution The following t the best course of (a) Maximin cr criterion (d) Cour acti	able repres of action us iterion (b) Laplace cr rse of ons	ent Course o sing the follo Maximax cr iterion. (e) H	f actions and wing criteric iterion (c) S Iurwicz crite States of natu N2	Approximates of n states of n n. avage minition (Alpha tre N3	tion method. ature. Find max regret a = 0.5)	15	CO4
t	optimal solution The following the best course of (a) Maximin criterion (d)	able repres of action us iterion (b) Laplace cr rse of ons 1	ent Course o sing the follo Maximax cr iterion. (e) H	f actions and wing criteric iterion (c) S Iurwicz crite	Approximates of n states of n n. avage mini cion (Alpha ure	tion method. ature. Find max regret a = 0.5)	15	CO4