Name: Enrolment No:			
Course: Operations Research Semester: III Program: BBA All Time $: 03$ Course Code: DSQT2006 Max. Marks: Instructions: Attempt all the questions			
$\begin{gathered} \text { SECTION A } \\ \text { 10Qx2M=20Marks } \end{gathered}$			
S. No.		Marks	CO
1	Which among the following costs is the expense of storing inventory for a specified period of time? (a) Financial cost (b) Storing cost (c) Carrying cost (d) Purchasing cost	2	CO1
2	If the Minimax are $(10,18,16)$ and Maximin are $(8,10,7)$. The saddle point is \qquad (a) 7 (b) 10 (c) 18 (d) 8	2	CO1
3	A given TP is said to be unbalanced, if the total supply is not equal to the total \qquad (a) Optimization (b) Demand (c) Cost (d) None of the above	2	CO1
4	Which technique is used in finding a solution for optimizing a given objective,such as profit maximization or cost reduction under certain constraints? (a) Queuing theory (b) Network analysis (c) Linear programming (d) Intuitive	2	CO1

5	---------are the restrictions or limitations imposed on the LPP. (a) objective function (b) variables (c) constraints (d) profit	2	CO1
6	In standard of LPP, the constraint $X+Y+Z=40$ then Z is said to be (a) Slack variable (b) Surplus variable (c) Artificial variable (d) None	2	CO1
7	The set of values of the decision variables $X_{1,}, X_{2, \prime}, \ldots, X_{n}$ satisfying the constraints and non-negativity restrictions of the problem is called (a) Optimal solution (b) Feasible solution (c) Bounded solution (d) Unbounded solution	2	CO1
8	The transportation problem deals with the transportation of (a) Single product from a source to several destinations (b) Several products from a source to a destination (c) Single product from several sources to a destination (d) Several products from several sources to several destinations	CO1	
9	In least cost method first allocation is made at (a) Lower right corner of the table (b) Upper right corner of the table (c) Highest costly cell of the table (d) None of the above	2	CO1
10	The method used for solving an assignment problem is called (a) Simplex method (b) Big-M method (c) Least cost method (d) Hungerian method	2	

$\begin{gathered} \text { SECTION B } \\ \text { 4Qx5M=20 Marks } \end{gathered}$						
11	Discuss the simulation along with its applicability. Also discuss its advantages and disadvantages.				5	CO 2
12	Define EOQ, Ordering and Holding cost.				5	CO2
13	Explain the assumptions in linear programming problem.				5	CO 2
14	The matrix given below illustrates a game, where competitors A and B areassumed to be equal in ability and intelligence. A has a choice of strategy 1 or strategy 2 , while B can select strategy 1 or strategy 2. Find the value of the game and optimum strategy for player A and B.				5	CO 2
$\begin{gathered} \text { SECTION-C } \\ \text { 3Qx10M=30 Marks } \end{gathered}$						

