Name:

Enrolment No:

Enrolment No:				
		WITH A PURPOSE		
	UNIVERSITY OF PETROLEUM AND ENE	RGY STUDI	ES	
	Examination, September 202.	3		
Course:	Supply Chain Analytics		mester: I	Π
Progran	n: MBA (Business Analytics)	Ti	me: 03 hr	s.
Course code: LSCM 8020 Ma			ax. Marks: 100	
	SECTION A			
	Question will carry 2 Marks			
	ction: Select the correct answer(s)/Fill in the blanks.		1	
S. No.	Question		Marks	CO
Q1.1	Which of the following is not a key component of a	supply chain	2	CO1
	analytics?			
	a) Inventory Management			
	b) Demand Forecasting			
	c) Social Media Marketing			
	d) Supplier Relationship Management			
Q1.2	Which statistical method is commonly used for der	mand	2	CO1
	forecasting in supply chain analytics?			
	a) Linear Regression			
	b) T-Test			
	c) Chi-Square Test			
01.2	d) ANOVA	·: 0	2	CO1
Q1.3	What is the difference between analytics and statist		2	CO1
	a) Analytics includes statistics and other composed			
	databases, data warehouses, and optimisation to			
	b) Statistics includes analytics and other compone databases, data warehouses, and optimisation to			
	c) Analytics and statistics are two completely diff			
	of study.	cient neius		
	d) There is no difference; these concepts can be us	sed		
	interchangeably.	sea		
Q1.4	Assume that you are a regular customer of a clothin	ng store.	2	CO1
X	Which of the following best describes the prescript		_	001
	component used by the store to make you a more v	•		
	customer?	·		
	a) Storing information about you and loading it in	to data		
	warehouses			
	b) Investigating correlations, sampling customer d	lata, and		
	summarising data			
	a) Determining the electric structure way will use at 12			1

c) Determining the clothing item you will most likely order on

d) Offering coupons or discounts to maximise sales or profits.

components: decision variables, objective functions, and

optimisation model has three major

your next visit.

constraints.a) Global

Q1.5

CO1

2

	b) Open		
	c) Constrained		
	d) Local		
01.6			CO1
Q1.6	Supply chain management aims to	2	CO1
	a) Manage and integrate supply and demand management.		
	b) Increase the production level.c) Provide satisfaction to the customer.		
	d) Enhance the quality of a product and services.		
Q1.7	Which of the following optimisation techniques is often used in	2	CO1
X -17	supply chain network design?		
	a) Monte Carlo Simulation		
	b) Linear Programming		
	c) Cluster Analysis		
	d) Principal Component Analysis		
Q1.8	What does the "Perfect Order Index" measure in supply chain	2	CO1
	analytics?		
	a) The number of orders delivered without delay		
	b) The accuracy of orders, considering factors like		
	completeness, timeliness, and condition		
	c) The total cost of order processing		
	d) The lead time variability		
Q1.9	What does the "Service Level Agreement (SLA)" specify in	2	CO1
	supply chain analytics?		
	a) The cost of products and services		
	b) The expected level of service and performance standards		
	between a supplier and a customer		
	c) The duration of a supply chain project		
	d) The terms of payment for suppliers		
01.10	Which inventory monocoment and del minimized and the	2	CO1
Q1.10	Which inventory management model minimises costs while	2	CO1
	meeting customer demand by balancing order quantity and holding costs?		
	a) EOQ (Economic Order Quantity)		
	b) LIFO (Last-In-First-Out)		
	c) FIFO (First-In-First-Out)		
	d) JIT (Just-In-Time)		
	SECTION B		
	uestion will carry five marks		
	tion: Write short notes	5	
Q2.1	List the five major steps involved in completing a full analytics	5	CO2
02.2	project from start to finish. Provide a brief explanation of the Analytic Hierarchy Process	5	CO2
Q2.2	Provide a brief explanation of the Analytic Hierarchy Process	5	CO2
Q2.3	(AHP) method with an example.The total demand for product "U" in the given year is six	5	CO2
Q2.5	hundred and thirty. It is given that the setup cost is INR 102.80,	5	
	numerce and unity. It is given that the setup cost is five 102.80,		

	and the inventory-carrying charge is INR one per unit per month. What is Economic order quantity, and how many months shall the ending inventory be zero?		
	Note: $\sqrt{\frac{2d}{h} * S}$		
Q2.4	In a sample of 34 employees, you wish to test if the average age of employees is 35. The sample mean is 38.677 and the sample standard deviation = 7.858. The Critical value is 2.0345, and the p-value is 0.0111. $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$	5	CO2
	s/\sqrt{n} Test the hypothesis. Will you accept or reject the H ₀ ?		
	SECTION C		
	uestion will carry ten marks.		
2. Instruc	tion: Answer with an explanation.		
Q3.1	The Supply Chain Operations Reference (SCOR) model developed by the Supply Chain Council provides a good framework for classifying the analytics applications in SCM. List at least ten (strategic, tactical or operational) decisions where supply chain analytics is useful.	10	CO3
Q3.2	 Explain at least ten commands with an explanation for the following in the context of R programming: 1. Reading and writing data files 2. Help 3. Data Structures 4. Functions 5. Programming tools 	10	CO3
Q3.3	What are the pros and cons of different distribution network designs? Also, explain at least two network model and their application.	10	CO3
	SECTION D		
1. Each q	uestion will carry fifteen marks.		
	tion: Answer with a detailed explanation.		
Q4.1	Inventories are stockpiles of raw materials, supplies, components, work-in-process, and finished goods that are kept and stored throughout a firm's supply chain. Explain the various components of the total inventory cost. Also, explain one single-period inventory model and two	15	CO3
	multiple-period inventory models		
Q4.2	kindly explain (step by step) the code below to make the reader understand each section and line. What is the expected output? Also, comment on the quality of the code.	15	CO3
	Code Starts		
L			1

library(ggplot2)	
library(caret)	
library(dplyr)	
data <- read.csv("winequality-red.csv")	
head(data)	
summary(data)	
feature names <- names(data)[-12]	
plot list <- lapply(feature names, function(feature) {	
ggplot(data, aes string(x = feature, y = "quality")) +	
geom point() +	
labs(x = feature, y = "Quality")	
})	
multiplot(plotlist = plot list, cols = 3)	
$X \leq -data[, -12]$	
y < - data squality	
set.seed(42)	
train indices <- createDataPartition(y, p = 0.8, list = FALSE)	
X train <- X[train indices,]	
X test <- X[-train indices,]	
y train <- y[train indices]	
y test <- y[-train indices]	
model < -train(x = X train, y = y train, method = "lm")	
y pred <- predict(model, newdata = X test)	
$mse <-mean((y_test - y_pred)^2)$	
15	
CO4	
4	
$r2 <-1 - sum((y_test - y_pred)^2) / sum((y_test -$	
$mean(y_test))^2$	
print(paste("Mean Squared Error:", mse))	
print(paste("R-squared Score:", r2))	
Code ends	