Name:

**Enrolment No:** 



UPES

## End Semester Examination, December 2023

Course: Application of OR in Transportation Program: MBA AVM Course Code: TRAV8021P Semester: III Time: 03 hrs. Max. Marks: 100

## **Instructions: As per sections**

| SECTION A<br>10Qx2M=20Marks |                                                                                                                                                                                                                                                                |       |     |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|--|--|
| S. No.                      | Attempt all questions in this section                                                                                                                                                                                                                          | Marks | СО  |  |  |  |
|                             | Multiple choice questions:                                                                                                                                                                                                                                     |       |     |  |  |  |
| 1                           | <ul> <li>An optimal solution to an LP is a feasible solution that</li> <li>(a) Optimizes the objective function of the LP.</li> <li>(b) Is the only feasible solution to the LP.</li> <li>(c) Both (a) and (b).</li> <li>(d) None of the above.</li> </ul>     | 2     | CO1 |  |  |  |
| 2                           | <ul> <li>A feasible solution to an LP is a solution that</li> <li>(a) Satisfies all of the constraints of the LP.</li> <li>(b) Optimizes the objective function of the LP.</li> <li>(c) Both (a) and (b).</li> <li>(d) None of the above.</li> </ul>           | 2     | CO1 |  |  |  |
| 3                           | <ul> <li>An infeasible solution to an LP is a solution that</li> <li>(a) Does not satisfy all of the constraints of the LP.</li> <li>(b) Optimizes the objective function of the LP.</li> <li>(c) Both (a) and (b).</li> <li>(d) None of the above.</li> </ul> | 2     | CO1 |  |  |  |
| 4                           | <ul> <li>Which of the following benefits can airlines achieve by using operations research?</li> <li>(a) Reduced costs</li> <li>(b) Increased revenue</li> <li>(c) Improved operational efficiency</li> <li>(d) All of the above</li> </ul>                    | 2     | CO1 |  |  |  |
| 5                           | Which of the following operations research techniques is used to solve the<br>linear programming problem?<br>(a) Simplex method<br>(b) Branch and bound method<br>(c) Dynamic programming<br>(d) All of the above                                              | 2     | CO1 |  |  |  |
| 6                           | Which of the following is NOT a typical application of operations research<br>in aviation transport?<br>(a) Crew scheduling                                                                                                                                    | 2     | CO1 |  |  |  |

|    | (b) Fleet assignment                                                                      |   |     |
|----|-------------------------------------------------------------------------------------------|---|-----|
|    | (c) Revenue management                                                                    |   |     |
|    | (d) Aircraft maintenance scheduling                                                       |   |     |
| 7  | Which of the following operations research techniques is used to solve the                |   |     |
|    | transportation problem?                                                                   |   |     |
|    | (a) Vogel's approximation method                                                          | 2 | CO1 |
|    | (b) North-West corner method                                                              | - | cor |
|    | (c) Hungarian method                                                                      |   |     |
| 0  | (d) All of the above                                                                      |   |     |
| 8  | Which of the following benefits can companies achieve by using linear                     |   |     |
|    | programming?                                                                              |   |     |
|    | A. Reduced costs                                                                          | 2 | CO1 |
|    | B. Increased productivity                                                                 |   |     |
|    | C. Improved decision-making                                                               |   |     |
| 9  | D. All of the aboveWhich of the following is NOT a typical application of linear          |   |     |
| 2  | programming?                                                                              |   |     |
|    | A. Production planning                                                                    |   |     |
|    | B. Inventory management                                                                   | 2 | CO1 |
|    | C. Financial planning                                                                     |   |     |
|    | D. Marketing research                                                                     |   |     |
| 10 | In Operations Research, what is the term for finding the best solution from               |   |     |
|    | a set of feasible solutions?                                                              |   |     |
|    | a) Optimization                                                                           | 2 | CO1 |
|    | b) Differentiation                                                                        | 2 | CO1 |
|    | c) Integration                                                                            |   |     |
|    | d) Enumeration                                                                            |   |     |
|    | SECTION B                                                                                 |   |     |
|    | 4Qx5M= 20 Marks<br>Attempt all questions in this section.                                 |   |     |
| 11 | Differentiate between Assignment problem and Transshipment problem.                       | 5 |     |
|    |                                                                                           | 5 | CO2 |
| 12 | A company uses 50,000 units of an item annually, each costing Rs. 1.20.                   |   |     |
|    | Each order costs Rs. 45, and inventory carrying charges are 15 percent of                 | 5 | CO2 |
|    | the annual average inventory value.                                                       |   |     |
| 13 | Find EOQ and Lead timeWhat do you understand by EOQ? Define various costs associated with |   |     |
| 13 | the EOQ model.                                                                            | 5 | CO2 |
| 14 | Define the Canonical and Standard form in linear programming problems.                    |   |     |
| 14 | OR                                                                                        |   |     |
|    | Use the graphical method to solve the LPP given below.                                    |   |     |
|    | $Max z = 8x_1 + 5x_2$                                                                     |   |     |
|    | $\frac{1}{2x_1 + 2x_2} \le 500$                                                           | 5 | CO2 |
|    | $\frac{2x_1 + 2x_2}{x_1} \le 300$                                                         |   |     |
|    | $x_1 = 150$<br>$x_2 \le 250$                                                              |   |     |
|    |                                                                                           |   | 1   |

|     |                                                                                                                                                                                                                     |                                                                                                                                  |         |        |            |          | ECTIO    |         |                    |    |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------|--------|------------|----------|----------|---------|--------------------|----|-----|
|     | Attempt all o                                                                                                                                                                                                       | ques                                                                                                                             | tions i | in thi | s sect     |          | 0M=30    | Mark    | S                  |    |     |
| 15  | How can op                                                                                                                                                                                                          | can operations research be used to optimize crew scheduling in<br>on transportation? What are some of the challenges involved in |         |        |            |          |          |         |                    |    | CO3 |
| 16  | What are the various methods available for obtaining the initial basic<br>feasible solution to transportation problems? Use the North-West Corner<br>Rule to find the initial solution for the problem given below. |                                                                                                                                  |         |        |            |          |          |         |                    |    |     |
|     |                                                                                                                                                                                                                     | )1                                                                                                                               |         | D 3    | D 4        |          | Supp     | ly      |                    | 10 | CO3 |
|     | <b>S</b> 1 3                                                                                                                                                                                                        |                                                                                                                                  | 7       | 6      | 4          | 5        | 5        |         |                    |    |     |
|     | <b>S 2</b> 2                                                                                                                                                                                                        |                                                                                                                                  | 4       | 3      | 2          | 2        | 2        |         |                    |    |     |
|     | S34Demand3                                                                                                                                                                                                          |                                                                                                                                  | 3 3     | 8      | 5          | 3        | 3        |         |                    |    |     |
| 17  | Demand3Solve the gar                                                                                                                                                                                                |                                                                                                                                  | I       |        | 2<br>fmotr | iv is a  | ivon hol | 011/    |                    |    |     |
| 1 / |                                                                                                                                                                                                                     |                                                                                                                                  | ۲ nose  | –2     | 0          | 0        | 5 3      | 8 1     |                    |    |     |
|     |                                                                                                                                                                                                                     |                                                                                                                                  |         | 3      | 2          | 1        | 2 2      | 2       |                    |    |     |
|     |                                                                                                                                                                                                                     |                                                                                                                                  |         | -4     | -3         | 0        | -2 6     | 5       |                    | 10 | CO3 |
|     | $\begin{bmatrix} -2 & 0 & 0 & 5 & 3 \\ 3 & 2 & 1 & 2 & 2 \\ -4 & -3 & 0 & -2 & 6 \\ 5 & 3 & -4 & 2 & -6 \end{bmatrix}$                                                                                              |                                                                                                                                  |         |        |            |          |          |         |                    |    |     |
|     | OR<br>What is game theory? Discuss its importance to business decisions.                                                                                                                                            |                                                                                                                                  |         |        |            |          |          |         |                    |    |     |
|     | what is game                                                                                                                                                                                                        |                                                                                                                                  | ory: L  | iscus  | 5 115 1    |          |          |         | ss decisions.      |    |     |
|     |                                                                                                                                                                                                                     |                                                                                                                                  |         |        |            |          | 5M = 30  |         | (S                 |    |     |
|     | Attempt all                                                                                                                                                                                                         | ques                                                                                                                             | tions i | in thi | s sect     |          |          |         |                    |    |     |
| 18  | Discuss the role of operations research in aircraft maintenance routing.                                                                                                                                            |                                                                                                                                  |         |        |            |          |          |         |                    |    |     |
| 10  |                                                                                                                                                                                                                     |                                                                                                                                  |         |        |            |          |          |         |                    |    |     |
|     | What are some of the key objectives that need to be considered when solving this problem?                                                                                                                           |                                                                                                                                  |         |        |            |          |          |         |                    |    |     |
|     | OR                                                                                                                                                                                                                  |                                                                                                                                  |         |        |            |          |          |         |                    |    |     |
|     | Solve the following LPP problem using the Simplex algorithm.                                                                                                                                                        |                                                                                                                                  |         |        |            |          |          |         |                    |    | CO4 |
|     |                                                                                                                                                                                                                     |                                                                                                                                  |         | Μ      |            | $= 3x_1$ | _        |         |                    | 15 |     |
|     | $x_1 \leq 4$                                                                                                                                                                                                        |                                                                                                                                  |         |        |            |          |          |         |                    |    |     |
|     |                                                                                                                                                                                                                     | $2x_2 \le 12$ $3x_1 + 2x_2 \le 18$                                                                                               |         |        |            |          |          |         |                    |    |     |
|     |                                                                                                                                                                                                                     | $3x_1 + 2x_2 \le 18$ $x_1, x_2 \ge 0$                                                                                            |         |        |            |          |          |         |                    |    |     |
| 19  | Using the fol                                                                                                                                                                                                       | lowi                                                                                                                             | ng cos  | t mat  |            |          |          | e optir | nal job assignment |    |     |
|     | and (b) the co                                                                                                                                                                                                      |                                                                                                                                  | -       |        |            |          |          | •       |                    |    |     |
|     |                                                                                                                                                                                                                     | Jobs                                                                                                                             |         |        |            |          |          |         |                    |    |     |
|     |                                                                                                                                                                                                                     |                                                                                                                                  | Job 1   | _      |            | Job 3    | Job 4    | Job 5   | -                  |    |     |
|     | Mechanics                                                                                                                                                                                                           | A                                                                                                                                | 10      | 3      |            | 3        | 2        | 8       | -                  | 15 | CO4 |
|     |                                                                                                                                                                                                                     | B                                                                                                                                | 9       | 7      |            | 8        | 2        | 7       | -                  |    |     |
|     |                                                                                                                                                                                                                     | C                                                                                                                                | 7       | 5      |            | 6        | 2        | 4       | -                  |    |     |
|     |                                                                                                                                                                                                                     | D                                                                                                                                | 3       | 5      |            | 8        | 2        | 4       | -                  |    |     |
|     |                                                                                                                                                                                                                     | E                                                                                                                                | 9       | 10     |            | 9        | 6        | 10      |                    |    |     |