

$\begin{gathered} \text { SECTION B } \\ \text { 4Q×5M=20 Marks } \end{gathered}$					
Q	Attempt Any 4 Questions. Each question carries equal marks.				CO 2
Q. 3	Average stage-length and the average distance flown by passengers are different. Explain with the help of an example.			05	CO2
Q. 4	Differentiate between High Yield Passengers and Low Yield Passengers.			05	CO 2
Q. 5	If your network is based on point to point or hub and spoke, how will it affect the cost structure?			05	CO2
Q. 6	What will be the nature of Average Fixed Cost and Average Variable Cost curves when output is increasing?			05	CO2
Q. 7	Discuss the pitfalls of averaging in airline business with the help of examples.			05	CO 2
$\begin{gathered} \text { SECTION-C } \\ \text { 3Qx10M=30 Marks } \end{gathered}$					
Q	Attempt all the questions. Each question carries equal marks.				CO3
Q. 8	How is seat allocation managed to maximize revenue while accounting for no-shows and cancellations?			10	CO 3
Q. 9	What are the major airlines with the highest market share in the industry, and how do their market shares contribute to the overall HHI Score?			10	CO 3
Q. 10	Answer the following questions based on Porter's Five Forces model as applied to the airline industry: - Are there any government regulations or policies that impact the ease of entry for new airlines? - How have fluctuations in fuel prices affected the bargaining power of fuel suppliers for airlines? - Are there any emerging technologies or trends that could serve as substitutes for traditional air travel? - What role does pricing, capacity management, and route networks play in the competitive dynamics of the airline industry?			10	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION-D } \\ \text { 2Qx15M=30 Marks } \end{gathered}$					
Q	Attempt all the questions. Each question carries equal marks.				CO4
	Continental Airlines When considering adding a new flight (or dropping an existing one that appears to be doing poorly). Continental engages in a very thorough incremental analysis along the lines given in the table. Incremental Analysis as Employed by Continental Airlines				

Decision	Run the flight. It will add \$ 1,100 to net profit by adding \$3,100 to revenues and only $\$ 2,000$ to costs. Overheads and other costs totaling \$2,500 (\$ 4,500 minus \$ 2,000) would be incurred whether the flight is running or not. Therefore, fully allocated or "average" costs of \$ 4,500 are not relevant to this business decision. It is the out-of-pocket or incremental costs that count.

The corporate philosophy is clear: "If revenues exceed out-of-pocket costs, put the flight on." In other words, Continental compares the out-of-pocket", or incremental, costs associated with each proposed flight to the total revenues generated by that flight. An excess of revenues over incremental costs leads to a decision to add the flight to Continental's Schedule.

The "out-of-pocket costs" figures that Continental uses is obtained by circulating a proposed schedule for the new flight to every operating department concerned and finding out what added expenses will be incurred by each of them. Here an alternative cost concept is used. If a ground crew is on duty and between work on other flights, the proposed flight is not charges a penny of their salary. Some costs may even be reduced by the additional flight. For example, on a late night round trip flight between Colorado Springs and Denver, Continental often flies without any passengers and with only a small amount of freight. Even without passenger revenues, these flights are profitable because their net costs are less than the rent for overnight space at Colorado Springs.

On the revenue side, Continental considers not only the projected revenues for the flights but also the effect on revenues of competing and connecting flights on the Continental Schedule. Several Continental flights which fail to cover even their out-of-pocket costs directly bring in passengers for connecting long-haul service. When the excess of additional revenue over cost on the long-haul flight is considered, Continental earns a positive net profit on the feeder service.

Continental's use of incremental analysis extends to its scheduling of airport, arrival and departure times. A proposed schedule for the Kansas City at that time was not sufficient to service two plans simultaneously. Continental would have been forced to lease an extra fuel truck and to hire three new employees at an additional monthly cost of $\$ 1,800$. However, when Continental began shifting around proposed departure times in other cities to avoid the congestion at Kansas City, it appeared that the company might lose as much as $\$ 10,000$ in monthly revenues if passengers switched

	to competing flights leaving at more convenient hours. Needless to say, the two flights were scheduled to be on the ground at the same time in Kansas City.		
Q.11	Discuss how Continental Airlines used incremental analysis in its flight service decisions.	$\mathbf{1 5}$	$\mathbf{C O 4}$
Q.12	Also demonstrate the usefulness of the technique.	$\mathbf{1 5}$	$\mathbf{C O 4}$

