Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Operations Research Program: BBA/B.Com/Int.BBA All Course Code: DSQT2006 Semester: III Time: 03 hrs. Max. Marks: 100

	SECTION A						
S. No.	10Qx2M=20Marks	СО					
Q1	In an assignment problem, if there were 5 jobs and 5 workers, the number						
Υı	assignments						
	(i) 25 solutions						
	(ii) 100 solutions	CO1					
	(iii) 120 solutions						
	(iv) 1 solution						
Q2	Constraints in a LPP model represents						
	(i) Limitation						
	(ii) Requirements	CO1					
	(iii) Both (i) and (ii)						
	(iv) None of the above						
Q3	The type of decision-making environment is						
-	(i) Certainty						
	(ii) Uncertainty	CO1					
	(iii) Risk						
	(iv) All of the above						
Q4	In an LPP, to convert \geq inequality constraints into equality constraints, we must						
	(i) use a slack variable						
	(ii) use an artificial variable	CO1					
	(iii) use a surplus variable						
	(iv) none of above						
Q5	An optimal solution of an assignment problem can be obtained only if						
	(i) Each row and column have only one zero element						
	(ii) Each row and column have at least one zero element	CO1					
	(iii) The data are arrangement in a square matrix						
	(iv) None of the above						
Q6	Which costs can vary with order quantity?						
	(i) Unit cost only						
	(ii) Reorder cost only	CO1					
	(iii) Holding cost only						
	(iv) All of these						
Q7	The dummy row or column in a transportation problem is added to						
	(i) satisfy demand and supply conditions	CO1					

	(ii)	prevent solu	tion from bec	coming infeasi	ble				
	(iii) ensure the total cost does not exceed a limit								
	(iv)	none of the							
Q8	In a pure strategy game								
-	(i) Any strategy may be selected arbitrarily.								
	(ii) A particular strategy is selected by each player.							CO1	
	(iii) Both players select their optimal strategy								
	(iv)	None of the							
Q9				testing in the s	implex metho	d for a minim	ization of LPP?		
	(i) All $c_j - Z_j \ge 0$								
	(ii) All $c_j - Z_j \le 0$								
	(iii)	Any $c_j - Z_j$	≥ 0						
	(iv)	Any $c_j - Z_j$	≤ 0						
Q10	What happ	oens when ma	aximin and m	inimax values	of the game a	re same?			
	(i)	No solution						CO1	
	(ii)	solution is n							
	(iii)	saddle point							
	(iv)	none of the	above	CE CELON	~				
				SECTION					
	-			Qx5M = 20 M					
Q11	What are t	he essential o	characteristics	s of Linear Pro	gramming Pro	oblem?		CO2	
Q12	What are the different types of decision-making environments? Provide explanations for each								
		a relevant exa		C		Ĩ		CO2	
Q13	Define the following terminology in term of replacement theory with suitable example:								
	i) Purchase cost								
	ii) Resale cost								
	iii) Running cost								
0.1.1				1.0		111			
Q14	A steel company has three open hearth furnaces and five rolling mills. The transportation costs								
	(rupees per quintal) for shipping steel from furnaces to rolling mills are given in the following table.								
	Ma M2 M3 M4 M5 Supply								
	F1	4	2	3	2	6	8		
	F2	5	4	5	2	1	12	CO2	
	F3	6	5	4	7	7	14	002	
	Demand	4	4	6	8	8	11		
	Find the initial basic feasible solution by Least cost method.								
			SECTIO	DN-C (attemp	t any threa				
				JN-C (attemp Qx10M=30 M					
-			5	X1001-30 W	141 NJ				

Q15	A small garment	-			-				-		
	five tailors are ca	-	-		types of	garm	nents.'	The outp	out per da	ay per tailor	
	for each type of garment are given below:										
	Ta	ilors			Garm	ents				7	
			1	2	3		4		5	_	
		A	14	27	8		24		24		CO3
		B	8	27	10		21		32		
		C	16	15	4		27		32		
		D E	12 14	15 24	16 20		30 27		40 36		
	Which type of g					h tai					
	assuming that the					11 tai		order	ιο παλη	llize pront,	
Q16	Solve the follow	ing game v	vhose na	voff ma	trix is giv	en h	elow	Include	in vour	answer: (i)	
Q10	strategy selection										
	have a saddle po					8		p	<i>j</i> • 11 <i>2</i> • •	8	
	1										
	Player A	Player B									
		B1	B1 B2		B3			B4			CO3
	A1	20	1	15	12		35				COS
	A2	25	1	14	8		10				
	A3	40	2		10			5			
	A4	-5	4		11	1 0		0			
Q17	A truck owner finds, from his past records, that the maintenance costs per year of a truck whose purchase price is Rs.8000/- are as given below:										
	Year	1	2	3	4		5	6	7	8	
	Maintenance co	ost 1000	1300	1700	2000	29	2900 3800		4800	6000	CO2
	Resale price	4000	2000	1200	600	50	00	400	400	400	CO3
	Determine what	time would	it be pro	ofitable to	o replace	the tr	ruck.				
Q18	Analyze the conc	ept of inver	ntory cor	ntrol and	illustrate	its in	nporta	nce with	a specif	ic example.	CO3
				SECT	ION-D						0.00
			2			76					
Q19	$2Qx15M=30 \text{ Marks}$ Let the variable x_1, x_2, x_3 denotes the unit of three types of product A, B and C, respectively,										
Υ 17	produced by a company and the following LPP shows the objective function and the										
	constraints:										
											CO4
			тах	z, Z = 22	$x_1 + 6x_2$	+ 22	x_3				
	Subject to				1 2		5				

	$7x_1 + 3x_2 + 2x_3 \le 72$ $2x_1 + 4x_2 + x_3 \le 80$ $x_1, x_2, x_3 \ge 0$ Solve the LPP by simplex method and comment.							
020								
Q20	The following matrix gives the payoff (in Rs) of different strategies S_1 , S_2 , S_3 against conditions N_1 , N_2 , N_3 and N_4 . State of Nature							
	Strategy	N1	N2	N3	N4			
	S1	4000	-100	6000	18000			
	S2	20000	5000	400	0	CO4		
	S3	20000	15000	-2000	1000			
	Indicate the decision taken under the following criterions: (i) maximax (ii) Laplace (iii) Hurwiez ($\alpha = 0.3$)							