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ABSTRACT 

Mathematical Models in Finance have been most active areas of research since 

their inception in 1973 as Black-Scholes model. Various mathematical models in 

the form of linear partial differential equations, nonlinear partial differential 

equations, partial-integro differential equations and fractional order partial 

differential equations were developed in the financial market (commodity market 

as well as securities market) arena. In commodity market most of the 

mathematical models are in the form of linear partial differential equations. 

However, models of all varieties as mentioned above can be found in securities 

market. 

The models in financial market as categorized above were solved effectively 

using the discretization techniques such as finite difference method (FDM), 

operator splitting method, alternating directions implicit (ADI) method, higher 

order compact (HOC) method, front-fixing method, exponential time integration 

(ETI) method, hybrid finite difference method, penalty method etc.  

Apart from the above mentioned discretization techniques, it is found in the 

literature that the non-discretization techniques such as Adomian decomposition 

method (ADM), variational iteration method (VIM), homotopy perturbation 

method (HPM) and homotopy analysis method (HAM) are also very effective in 

solving linear partial differential equation (Black-Scholes equation) and obtained 

the solution in the form of an approximate polynomial. At the same time 

analytical solution techniques such as first integral method (FIM), tanh-coth and 

sine-cosine methods in various fields of engineering and science also offer 

effective and exact solution for nonlinear partial differential equations.
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The present study focusses on the solution of nonlinear Black-Scholes partial 

differential equation of securities market and the solution of linear partial 

differential equations of commodity market. This work is devoted to study the 

efficacy of the mentioned analytical methods on the nonlinear Black-Scholes 

equation and the non-discretization techniques on the linear partial differential 

equations with variable coefficients proposed by Schwartz and termed as one 

factor, two factor and three factor commodity price models. 

This study is divided into nine Chapters and an Appendix. The first chapter is 

devoted for introduction to understand the financial market and need of 

mathematical modeling in financial mathematics. The second chapter is devoted 

to the literature survey of financial mathematical models and its solution 

techniques. Chapter 3 presents the description of the non-discretization and 

analytical solution techniques which are to be used in the study. Chapter 4 is 

devoted to the effectiveness of the analytical solution techniques on nonlinear 

Black-Scholes equation. Chapters 5, 6, and 7 devote to testing the efficiency of 

non-discretization solution techniques ADM, VIM, HPM and HAM on one factor, 

two factor and three factor Commodity Price models respectively. Chapter 8 is 

devoted to the conclusions. Finally, Chapter 9 is devoted to the future scope based 

on this study. The Appendix contains the solutions of the commodity price 

models and its convergence results obtained using ADM, VIM and HAM. 

 



 

vi  

TABLE OF CONTENTS 

 

NOMENCLATURE x 

LIST OF TABLES xiii 

CHAPTER ONE: INTRODUCTION 1-9 

1.1 Financial Markets 1 

  1.1.1 Spot & Future Prices 2 

  1.1.2 Financial Securities & Commodities 2 

  1.1.3 Stochastic Study-Mathematical Modelling 2 

1.2 Black-Scholes Model 5 

1.3 Mathematical Techniques 7 

  1.3.1 Discretization Techniques 8 

  1.3.2 Non-Discretization Techniques 8 

1.4 Present Study 8 

CHAPTER TWO: LITERATURE SURVEY 10-32 

2.1 Conclusion 32 

2.2 Objective 32 

CHAPTER THREE: SOLUTION TECHNIQUES 33-42 

3.1 Adomian Decomposition Method 33 

3.2 Variational Iteration Method 34 

3.3 Homotopy Perturbation Method 35 

3.4 Homotopy Analysis Method 37 

3.5 First Integral Method 38 

3.6 Tanh-Coth Method 39 

3.7 Sine-Cosine Method 40 

3.8 Technical Computing Software 41 



 

vii 
 

CHAPTER FOUR: BLACK-SCHOLES EQUATION AND ITS 

SOLUTION 
43-47 

4.1 Solution of Nonlinear Black-Scholes equation using FIM 44 

4.2 
Solution of Nonlinear Black-Scholes equation using Tanh-Coth 

method 
45 

4.3 
Solution of Nonlinear Black-Scholes equation using Sine-Cosine 

method 
46 

4.4 Conclusion 46 

CHAPTER FIVE: ONE FACTOR COMMODITY PRICE MODEL 

AND ITS SOLUTION 
48-63 

5.1 One Factor Commodity Price Model 48 

5.2 Solution of One Factor Commodity Price Model using ADM 48 

5.3 Solution of One Factor Commodity Price Model using VIM 49 

5.4 Convergence of Solution of One Factor Commodity Price Model 49 

  
5.4.1 Convergence of solution of One Factor Commodity Price 

Model using VIM 
49 

  
5.4.2 Convergence of solution of One Factor Commodity Price 

Model using ADM 
51 

5.5 Numerical Examples 51 

5.6 
Solution of One Factor Commodity Price Model using HAM and 

HPM 
52 

  5.6.1 Solution using HAM 52 

  5.6.2 Solution using HPM 53 

5.7 Results and Discussion 54 

  5.7.1 Results 54 

  5.7.2 Discussion 62 

5.8 Conclusion 63 

CHAPTER SIX: TWO FACTOR COMMODITY PRICE MODEL 

AND ITS SOLUTION 
64-81 

6.1 Two Factor Commodity Price Model   64 

6.2 Solution of Two Factor Commodity Price Model using ADM   64 



 

viii 
 

6.3 Solution of Two Factor Commodity Price Model using VIM 65 

6.4 
Convergence of Solution of Two Factor Commodity Price 

Model 
66 

  
6.4.1 Convergence of solution of Two Factor Commodity Price 

Model using VIM 
66 

  
6.4.2 Convergence of solution of Two Factor Commodity Price 

Model using ADM 
68 

6.5 Numerical Examples 68 

6.6 
Solution of Two Factor Commodity Price Model using HAM 

and HPM 
69 

  6.6.1 Solution using HAM 69 

  6.6.2 Solution using HPM 69 

6.7 Results and Discussion 70 

  6.7.1 Results 70 

  6.7.2 Discussion 79 

6.8 Conclusion 80 

CHAPTER SEVEN: THREE FACTOR COMMODITY PRICE 

MODEL AND ITS SOLUTION 
82-101 

7.1 Three Factor Commodity Price Model 82 

7.2 Solution of Three Factor Commodity Price Model using ADM 83 

7.3 Solution of Three Factor Commodity Price Model using VIM 83 

7.4 
Convergence of Solution of Three Factor Commodity Price 

Model 
84 

  
7.4.1 Convergence of solution of Three Factor Commodity 

Price Model using VIM 
85 

  
7.4.2 Convergence of solution of Three Factor Commodity 

Price Model using ADM 
86 

7.5 Numerical Examples 86 

7.6 
Solution of Three Factor Commodity Price Model using HAM 

and HPM 
87 

  7.7.1 Solution using HAM 87 

  7.7.2 Solution using HPM 88 

7.7 Results and Discussion 88 



 

ix 
 

  7.7.1 Results 88 

  7.7.2 Discussion 99 

7.8 Conclusion 101 

CHAPTER EIGHT: CONCLUSIONS 102 

CHAPTER NINE: FUTURE SCOPE OF RESEARCH 103 

APPENDIX A1: ONE FACTOR COMMODITY PRICE MODEL 104-109 

A 1.1 Obtained Approximate Solutions using ADM & VIM 104 

  A 1.1.1 Solution using Crude oil parameters 104 

  A 1.1.2 Solution using Copper parameters 104 

A 1.2 
Eight Sets of Polynomials in terms of convergence control 

parameter 
105 

A 1.3 Convergence Values 108 

APPENDIX A2: TWO FACTOR COMMODITY PRICE MODEL 110-113 

A 2.1 Obtained Approximate Solutions using ADM & VIM 110 

  A 2.1.1 Solution using Crude oil parameters 110 

  A 2.1.2 Solution using Copper parameters 110 

A 2.2 
Eight Sets of Polynomials in terms of convergence control 

parameter 
111 

A 2.3 Convergence Values 113 

APPENDIX A3: THREE FACTOR COMMODITY PRICE MODEL 114-119 

A 3.1 Obtained Approximate Solutions using ADM & VIM 114 

  A 3.1.1 Solution using Crude oil parameters 114 

  A 3.1.2 Solution using Copper parameters for Copper 115 

A 3.2 
Eight Sets of Polynomials in terms of convergence control 

parameter 
115 

A 3.3 Convergence Values 118 

REFERENCES 120-133 



 

x 
 

NOMENCLATURE 

   Log run mean price of the convenience yield 

    Speed rate of variance 

    Mean value of variance 

    Measure of the price slippage impact of a trade 

   Stochastic volatility of variance process 

    Risk aversion factor  

  Variance process 

    Jump intensity 

 ̃  Market price of risk    

   Drift rate 

    Proportional transaction cost  

   Levy measure 

    Constant  

    Correlation between spot price and convenience yield of a 

commodity 

    Correlation between convenience yield and risk free interest rate 

of a commodity 

    Correlation between risk free interest rate and spot price of 

commodity 

    Measure of liquidity of the market 

 ̅  Correlation between stock price and xvariance process 

   Volatility  



 

xi 
 

    Volatility of spot price of a commodity 

    Volatility of convenience yield 

    Volatility of the risk free interest rate 

    Time independent volatility 

  
   Non-linear adjusted volatility 

    Volatility correction function 

   Speed adjustment of interest rate  

    Arithmetic average of stock price  

   Price of Option 

    Size distribution function of finite jump process 

    Minimum guaranteed benefit 

   Speed adjustment of commodity spot prices 

    Risk adjusted mean short rate of interest rate 

    Amount of dividend  

   Risk free interest rate (constant) 

    Jump intensity 

   Time 

   Future price of a commodity 

   Spot price of a commodity 

   Convenience yield of a commodity 

   Instantaneous risk free interest rate 



 

xii 
 

      Amount of contribution to the portfolio at time   

   Strike/exercise price 

    Number of options to be sold 

      Contract at time    

   Stock price 

   Maturity date/time 

   and     Instants immediately before and after the deemed contribution 

respectively 

   and     The time in equilibrium state and non-equilibrium state 

respectively 



 

xiii 
 

LIST OF TABLES 

   

5.1 Represents the absolute errors obtained against exact Crude oil 

future prices with                         ̃        

for various iterations using ADM and VIM  

54 

5.2  Represents the absolute errors obtained against exact Crude oil 

future prices with                         ̃        

for various iterations using ADM and VIM 

54 

5.3 Represents the absolute errors obtained against exact Crude oil 

future prices with                         ̃       for 

various iterations using ADM and VIM 

55 

5.4  Represents the absolute errors obtained against exact Copper 

future prices with                         ̃        

for various iterations using ADM and VIM 

55 

5.5  Percentage errors obtained using the equation (5.16) using ADM 56 

5.6  Absolute errors obtained using the equation (5.16) using VIM 56 

5.7  Represents the time elapsed in seconds for finding the approximate 

solution obtained by ADM vs VIM of the model with the 

parameter values used in table 5.1 

57 

5.8 Represents the time elapsed in seconds for finding the approximate 

solution obtained by ADM vs VIM of the model with the 

parameter values used in table 5.2 

57 



 

xiv 
 

5.9 Represents the time elapsed in seconds for finding the approximate 

solution obtained by ADM vs VIM of the model with the 

parameter values used in table 5.3 

57 

5.10 Represents the time elapsed in seconds for finding the approximate 

solution obtained by ADM vs VIM of the model with the 

parameter values used in table 5.4 

58 

5.11 Represents the possible convergence control parameter (  ) values 

with the parameter values used in table 5.1 for n=4 

58 

5.12 Represents the possible convergence control parameter (  ) values 

with the parameter values used in table 5.1 for n=7 

59 

6.1 Represents the absolute errors obtained against exact Crude oil 

future prices with                              

                      ̃        for various iterations using 

ADM and VIM 

70 

6.2  Represents the absolute errors obtained against exact Crude oil 

future prices with                              

                      ̃        for various iterations using 

ADM and VIM 

71 

6.3 Represents the absolute errors obtained against exact Crude oil 

future prices with                              

                      ̃        for various iterations using 

ADM and VIM 

72 

6.4 Represents the absolute errors obtained against exact Copper 

future prices with                              

                      ̃        for various iterations 

using ADM and VIM 

73 



 

xv 
 

6.5 Percentage errors obtained using the equation (6.14b) 74 

6.6 Percentage errors obtained using the equation (6.14b) 74 

6.7 Represents the time elapsed in seconds for finding the solution of 

Two Factor model with the parameter values used in table 6.1 

75 

6.8 Represents the time elapsed in seconds for finding the solution of 

Two Factor model with the parameter values used in table 6.2 

76 

6.9 Represents the time elapsed in seconds for finding the solution of 

Two Factor model with the parameter values used in table 6.3 

76 

6.10 Represents the time elapsed in seconds for finding the solution of 

Two Factor model with the parameter values used in table 6.4 

 

76 

6.11 Represents the possible values of convergence control parameter 

(  ) obtained with the parameter values used in table 6.1 for n=4 

 

76 

7.1 represents the absolute errors obtained against exact Crude oil 

future prices with                             

                                         

         ̃                         for various iterations 

using ADM and VIM 

89 

7.2 Represents the absolute errors obtained against exact Copper 

future prices with                                   

                                               

             ̃        for various iterations using ADM and 

VIM 

91 

7.3 Percentage errors obtained using the equation (7.17b) 

 

94 

7.4 Percentage errors obtained using the equation (7.17b) 94 



 

xvi 
 

7.5 Represents the time elapsed in seconds for finding the solution of 

Three Factor model with the parameter values used in table 7.1 

95 

7.6 Represents the possible values of convergence control parameter 

(   ) obtained with the parameter values used in table 7.1 for n=4 

95 

 



 

1 
 

CHAPTER-1 

INTRODUCTION 

1.1 FINANCIAL MARKETS 

Financial market is mainly categorized into two types such as Securities Market 

and Commodity Market. The main dissimilarity among these two markets is the 

goods operated. On commodities markets, futures contracts for real commodities 

are bought and sold, while on the securities market, financier’s trade shares of 

stock in firms. However, the trading of stocks and commodities on these markets 

are similar. Mostly trading happens on the physical exchanges, such as the New 

York Stock Exchange (NYSE) and the Chicago Mercantile Exchange (CME). 

Though, ample trading also happens off the exchange. Stocks in the securities 

market, sold-off an exchange are said to be sold "over the counter." Commodities 

sold-off a controlled exchange are said to be sold on the "spot market." 

The securities and commodity markets are linked in many ways. In concept, the 

securities market increases and decreases based on the reported earnings and 

projected earnings of the companies with stock trading on an index. When 

business decelerates, or the cost of producing products increases, earnings will 

fall and so will stock prices. At times, when the commodity markets are rallying, 

the rise in prices of those commodities means corporate earnings of users of those 

commodities will decline. Sometimes interference by central banks makes a 

situation where both commodity markets and securities markets rally or drop. 
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1.1.1 SPOT & FUTURE PRICES 

Trading in financial products has been an important component of world 

economy. Financial contracts in ‘Spot’ and ‘Future’ trading for both financial 

securities and commodities have dominated in the international markets. In simple 

terms, ‘Spot price’ refers to prices at which immediate delivery/receipt of a 

product is made. ‘Future price’ refers to prices at which delivery/receipt of a 

product is made on a future date. Financial securities include commercial bills, 

treasury bills, shares, bonds and so on. Commodities include metals such as gold, 

silver, copper; crude oil, agricultural products, and so on. 

1.1.2 FINANCIAL SECURITIES & COMMODITIES 

The trading of these financial securities and commodities happen both at national 

and international levels involving huge amount of money between the sellers and 

buyers with the assistance of registered brokers.  

Contracts that started on mere gut feel of the participants in the early stages has 

slowly transformed into trade agreements based on logical analysis for the market 

conditions and demand and supply factors. Factors such increasing number of 

multi-national participants, multi-variant products, and high risk of financial 

manipulations, coupled with policies of different governments across the world 

mandated for a robust analysis of the price movements of the securities and 

commodities traded. 

1.1.3 STOCHASTIC STUDY – MATHEMATICAL MODELING 

The term Stochastic, as given in Oxford Dictionary “characterized by a sequence 

of random variables” and refers to process. Stochastic study aims to understand 

the influence in variations of different variables that affect the prices of a product. 

The financial industry has both stimulated and benefited from advances in various 

disciplines of mathematical sciences like probability, differential equations,
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 Optimization, statistics and numerical analysis. The study of financial systems is 

centered on the study of the behavior of economic agents in allocating and 

deploying their resources, both spatially and across time, in an uncertain 

environment. Time and uncertainty are central elements which influence the 

financial behavior.   

During 1970-1980, a significant research was commenced in development of new 

models and refinement of existing mathematical models (Black & Scholes [24], 

Brennan & Schwartz [26]-[28]). By this time the financial databases to support 

these models were extremely larger and the feasibility of implementing these 

models was also much greater. The developments in computing and 

telecommunication technologies made possible the formation of new financial 

markets and the same technologies made feasible the numerical solution of 

complex models of multivariate partial differential equations. During this period 

many mathematicians got attracted to the financial services industry by high 

salaries and challenging problems. 

The advent of mathematical modeling, during the 20
th

 Century, for the financial 

markets has brought a shift in the paradigm and made the contracts of spot, future, 

and forwards more reliable. Numerous models were proposed and developed to 

support contracts in the financial market arena (Andersen & Andersen [12], 

Company & et al [30], Cont & Voltchkova [31], Esekon [41], Jensen & et al. [75], 

Kumar & et al. [79], Oosterlee [100], Rodrigoa [108], Schwartz [111], Tangman 

& et al. [119], Toivanen [122], Vencer [125], Yun [136], [137]). However, all of 

these evolved in the developed western economies and were dominated the 

features of those economies. 

Economic reforms taken up by the Indian government during 1990’s have 

contributed for development of their financial systems. With the development of 

economy, financial markets have also advanced and demands for robust analysis 
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for market trends gained prominence. Models proposed by western researchers 

are being applied with necessary modifications.  

Financial mathematics, also termed as financial engineering, mathematical 

finance, and computational finance, is the application of mathematical methods to 

the solution of problems in finance. It imbibes tools from applied mathematics, 

computer science, statistics, and economic theory for financial models. 

Investment banks, commercial banks, hedge funds, insurance companies, 

corporate treasuries, regulatory agencies and commodity traders apply these 

methods of financial mathematics to problems such as derivative securities 

valuation, portfolio structuring, risk management, scenario simulation and 

commodity prices. Quantitative analysis has brought efficiency and rigor to 

financial markets and to the investment process and is becoming increasingly 

significant in regulatory concerns. With the pace of financial innovation, the need 

for highly qualified people with specific training in financial mathematics 

intensifies. 

Finance, offspring of economics, concerns itself with the valuation of assets and 

financial instruments as well as the apportionment of resources. Centuries of 

history and experience have resulted in fundamental theories on the way 

economies function and the way we value assets. Mathematics acts as a suitable 

tool because it allows theoreticians to model the relationships between variables 

and represent randomness in a manner that can lead to useful analysis. 

Mathematics, then, becomes a useful reserve from which researchers can draw to 

solve problems, provide insights and make the intractable model tractable. 

Mathematical finance gathers from the disciplines such as probability theory, 

statistics, scientific computing and partial differential equations to provide models 

and derive relationships between fundamental variables like asset prices, market 

movements, interest rates and convenience yield. These mathematical tools allow 
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us to infer conclusions that can be otherwise difficult to find or not immediately 

obvious from human intuition.  

Support of modern computational techniques help in storage of vast quantities of 

data and model numerous variables simultaneously, leading to the ability to model 

quite large and complicated systems. So, it may be inferred that techniques of 

scientific computing, such as numerical computations, Monte Carlo simulation, 

and optimization are an important part of financial mathematics. 

1.2 BLACK-SCHOLES MODEL 

A large part of any science is the ability to develop testable hypotheses based on a 

fundamental understanding of the objects of study and prove or contradict the 

hypotheses through repeatable studies. In this light, mathematics is a language to 

represent theories and provides tools for testing their validity. For instance, in the 

theory of option pricing due to Black, Scholes and Merton, a model [24], for the 

movement of stock prices is posited, and in conjunction with basic theory which 

states that a riskless investment will result in risk-free rate of return, the 

researchers reasoned that a value can be assigned to an option that is independent 

of the expected future value of the stock. 

This theory, for which Scholes and Merton were awarded the Nobel Prize, is a 

classic illustration of the interaction between math and financial theory, which 

ultimately led to a surprising insight into the nature of option prices. The 

mathematical contribution was the basic stochastic model (Geometric Brownian 

motion) for movement of stock prices and the partial differential equation (PDE) 

and its solution providing the relationship between the option's value and other 

market variables. Their analysis also helped in providing a completely specified 

strategy for managing option investment which permits practical testing of the 

model's consequences. This theory, which would not have been possible without 

the fundamental participation of mathematics, today plays a significant role in a 

trillion dollar industry. 
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Over the past three decades the deficiencies of the Black-Scholes model have 

become progressively clear, with some academic observers continually ringing 

the “death knell” of the formula as its weaknesses become more obvious and it 

can lead to substantial discrepancies between actual market prices and prices 

calculated using the model. These discrepancies between market and theoretical 

prices are obvious in the observation of different implied volatilities as per the 

exercise prices (smile or skew) and maturities (term structure). Therefore, despite 

their popularity and wide spread use, the model is built on some non-real life 

assumptions about the market. One problem with the Black-Scholes analysis, 

however, is that the mathematical skills that are required in the derivation and 

solutions of the model are fairly advanced and probably unfamiliar to many 

economists.  

Trade Markets & Models 
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significant due to the dynamics of market. They help in prediction of price 

movement of the financial products with highest precision. These models, often 

times, are in the form of statistical models and PDE models. However, tracing the 

accurate solution for these equations is a herculean task which went arrived would 

help in the development of new mathematical techniques. Statistical models 

include STARX (McMillan [91]), TAR and STAR (Valtteri [124]), ARIMA 

(Khan & et al. [78]), and GARCH (Ramirez & Fadiga [106]), etc. PDE models 

include linear, nonlinear partial differential equations (NPDE) and partial-integro 

differential equations (PIDE).  

Esekon, J. E. [41], developed a nonlinear Black-Scholes model for hedging of 

derivatives in illiquid markets, and has obtained analytical solution using 

transformation of variables.    

1.3 MATHEMATICAL TECHNIQUES 

Arriving at analytical solution is phenomenal assignment since most equations do 

not have exact methodology for application. However, there are some special 

methods such as First integral method (FIM) proposed by Feng [49], Tanh-Coth 

method proposed by Wazwaz [127] and Sine-Cosine method proposed by 

Alquran & Al-Khaled [11] to get the exact solution of nonlinear PDEs. But, these 

methods have their own limitations for their applicability such as involving 

variable coefficients, finding the parameters in Tanh-Coth method and Sine-

Cosine methods.  

Researchers attempted to develop techniques that could arrive at approximate 

solution with desired accuracy. These approximate solution techniques have been 

classified into two categories like discretization and non-discretization techniques. 
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1.3.1 DISCRETIZATION TECHNIQUES 

These include, Finite difference method (FDM) (Brennan & Schwartz [26]-[28]), 

Alternating Directions Implicit method (ADI) (Andersen & Andersen [12]), 

Front-fixing method & Penalty method (Nielsen & et al. [96]), Backward 

difference formula BDF2 (Oosterlee [100]), Operator splitting method (Ikonen & 

Toivanen [71]), Explicit-implicit finite difference method (Cont & Voltchkova 

[31]), hybrid finite difference method (Cen & et al. [29]), high-order front-

tracking finite difference method (Toivanen [122]), exponential time integration 

(ETI) method (Tangman & et al. [119]), Higher Order Compact (HOC) (Kumar & 

et al. [79]), are discretization methods in solving the PDE models aroused in 

financial market.  

1.3.2 NON- DISCRETIZATION TECHNIQUES 

These techniques include, Adomian Decomposition Method (ADM) proposed by 

Adomian [5], Variational Iteration Method (VIM) proposed by He [59], 

Homotopy Perturbation Method (HPM) proposed by Liao [83], and Homotopy 

Analysis Method (HAM) proposed by Liao [87], are non-discretization methods 

used in solving the Black-Scholes equation. The methods were developed for non-

linear and ordinary differential equations (ODEs) and PDEs, it is proved by later 

researches that it can be applied to partial integro-differential equations subject to 

the satisfaction of initial boundary conditions. 

The above discretization and non-discretization methods were developed for 

solving the nonlinear PDEs. However, further researchers have tested them for 

linear PDEs with successful results in different fields of engineering and science. 

1.4 PRESENT STUDY 

The present study “Stochastic Behavior of Spot and Future Commodity Prices: 

Numerical Methods Approach” focusses primarily on the PDE models of linear 
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(commodities market) and non-linear (securities market) and is based on the 

scope for further study, as suggested Esekon [41] “Future work will also involve 

solving the nonlinear Black-Scholes equation using the hyperbolic tangent (Tanh) 

method.” The ‘Tanh’ method suggested provides an opportunity to arrive at 

analytical solutions.  

Tan-Coth method, the extension of Tanh method, First Integral Method (FIM), 

and Sine-Cosine Method are three powerful methods identified to solve non-linear 

PDEs in the literature. Taking these researches as cue the present study aims to 

test applicability of FIM, Tan-Coth method, and Sine-Cosine methods to solve 

non-linear Black-Scholes equation.  

At the same time, the present study proposes to consider testing of non-

discretization techniques such as ADM, VIM, HPM and HAM. These non-

discretization techniques are successfully applied by Allahviranloo [8], on linear 

Black-Scholes equation which becomes the base of the present study to test its 

applicability to solve one-factor, two-factor and three-factor commodity price 

models given by Schwartz [111]. 
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CHAPTER-2 

LITERATURE SURVEY 

Black, F., & Scholes, M. (1973) [24], developed a parabolic PDE of second order 

for European price call option under the following assumptions:  

i. The stock price monitors generalized wiener process with constant 

expected rate of return and constant volatility of the stock price.  

ii. The short trade of securities with full use of proceeds is allowed 

iii. There are no operation costs or taxes. All securities are naturally divisible 

iv. There are no dividends through the life of the derivatives 

v. There are no riskless arbitrage predictions 

vi. Security exchange is continuous 

vii. The risk free rate of interest is constant and similar for all maturities 

The model obtained is: 

 
 

 
       

      
  

  
 

  

  
     

with boundary conditions        {
                
                     

                        

and                       

Solution technique: using the transformation        
 

 
          ̅       , 

where      (
 

 
)    
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The Black-Scholes equation has been transformed in to 
  ̅

  
 

  ̅ 

    
 with the 

boundary condition  (   
  )                 

where    
   (

  

 
)                            .   

This is well recognized one dimensional Heat equation. Black-Scholes solved this 

equation analytically and following Conclusion(s) were drawn. 

 The option value increases continuously as T, r or    rises. In each case, it 

approaches a supreme value equal to the stock price. 

 Option is more impulsive than the stock. 

Brennan, M. J., & Schwartz, E. S. (1976) [26], assumed that on the valuation of 

options embedded in unit-linked (equity-linked) life insurance products the 

contract advantage was linked directly to the market value of a reference 

portfolio-the unit-and the embedded guarantee was almost always a maturity 

guarantee with some specified absolute amount guaranteed to be paid at maturity. 

Defined in this way, unit-linked life insurance agreements was priced by some 

adapted version of Black-Scholes option pricing formula.   

The model obtained is  

 
 

 
       

      
  

  
 

  

  
    with the following conditions: 

i. At termination T = t 

 (            )     [            ]             

ii. At  any  time  at  which  a  influence  is deemed  to  be made  to  the  

reference portfolio 

 (                )                        

iii. At any time previous to maturity 
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iv. When  there  are  no  further  contributions  to  be  made  to  the  

mentioned portfolio    (           )     

v. At  any  time  previous  to  the  final  contribution  to  the  reference  

portfolio,   (           )                    

Solution technique: solved using the finite difference scheme 

Conclusion(s): 

 The  put  premium  rises  with  the  age  of  the  purchaser  at  admission  

essentially less  is likely  to  be  the  operative  term  of  the  policy,  and  

of  course  this  effect  is  more pronounced  for  longer-term  policies  

which  take  the  policyholder  into  the  years of  high  mortality.   

 Increased the supposed variance rate from 0.01864 to 0.04 and presented  

that  an  increase  in the  variance  rate  increases  the  value  of  a  call  

option  and  must  therefore  decrease the  value  of  a  put  option. 

 Measured the  ratio  between  the  amount  actually  invested  in  the  

reference portfolio  under  the  riskless  strategy,  and  the  amount  

deemed  to  be invested  in  the  reference  portfolio, and shown that this  

ratio  at  different  stages  in  the  contract  life assuming  different  rates  

of  return  on  funds  deemed  to  be  financed  in  the  reference portfolio.   

Brennan, M. J., & Schwartz, E. S. (1977) [27], developed a second order 

parabolic type PDE for American put options in the similar lines of Black-Scholes 

model and used this model to evaluate the pricing of put contracts traded in the 

New York dealer market. Solution of the PDE represents the value of the put 

option and the put option values found using Finite difference techniques. 

Model: 
 

 
       

      
  

  
 

  

  
    with the following conditions 

i.            [      ] 

ii.            [      ] 
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iii.           

iv.          

v.                 

vi.             [                    ] 

Solution technique: solved the above problem using finite difference scheme 

Conclusion(s): 

 The model scientifically over-value the put contracts comparative to the 

observed market prices 

Brennan, M. J., & Schwartz, E. S. (1978) [28], suggested a log transformation 

of the Black-Scholes PDE to obtain the PDE with constant coefficients which 

makes it possible to apply the explicit finite difference methods such as Crank-

Nicolson method. 

Model: 
 

 
       

      
  

  
 

  

  
    

Solution technique: using the transformation                        the 

model reduced to 
 

 
     

   
    

  

 
 
  

  
 

  

  
   , PDE with constant 

coefficients which has been solved by implicit-explicit finite difference (Crank-

Nicolson method) schemes. 

Conclusion(s): 

 The implicit finite difference estimate to the log transform of the Black-

Scholes PDE is also comparable to approximating the diffusion process by 

jump process. Jump process is indiscriminate one which allows for the 

possibility that the stock price will jump to infinity of possible future 

values. 

 The simpler explicit finite difference approximation agrees to a three point 

jump process while the more complex implicit finite difference 
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approximation corresponds to a generalized jump process to infinity of 

possible points. 

Schwartz, E. S. (1997) [111], offered three models of commodity prices which he 

named as one-factor, two-factor and three-factor models respectively, and derived 

the corresponding formulas for pricing futures contract in each model. In the first 

model he adopts that the logarithm of the spot price of the commodity follows a 

mean reverting process of the Ornstein-Uhlenbeck type, for the second model, he 

incorporated a second stochastic factor, the convenience yield in the first model 

which is mean-reverting and absolutely correlated with the spot price and was 

further extended the second model by seeing the stochastic interest rates to derive 

the third model. 

One-factor model equation: 

  
 

 
       (   ̃       )                                                                                    

with terminal boundary condition                                                                        

The two-factor model equation:  

  
 

 
                 

  
 

 
              [        ̃]               

with terminal boundary condition                                    

The three-factor model equation: 

  
 

 
      

  
 

 
    

  
 

 
                                    

            ̂                                                         

with terminal boundary condition                  

where   ̂    
 

 

̃
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The normal Black-Scholes postulation of stock diffusion model with constant 

volatility was keenly observed by market participants until 1987’s market bang. 

The crash introduced a new era of market discipline and witnessed to use different 

volatilities which lead a model through Partial Integro-Differential equation for 

European option prices which was developed by Andersen, L., & Andersen, J. 

(2000) [12] 

Model: 
  

  
 (         ̃)   

  

  
 

 

 
             

   
     [  ]     

 [       ]   [           ]         ∫          ̃       
 

 
         

with the condition:                      

where {    }    is the sequence of positive stochastic variables, and   ̃  

 [      ] 

Solution technique: solved the PIDE using ADI (Alternating Directions Implicit) 

method.  

Conclusion(s): 

 They have given the framework for adding Poisson jumps to the standard 

DVF (Deterministic volatility Function) diffusion models of stock price 

evolution 

 Applied the above PIDE model to the S&P500 market results in a largely 

constant diffusion volatility overlaid with a substantial jump component  

Jensen, B., JØrgensen, P. L., & Grosen, A. (2001) [75], extended the Brennan, 

M. J., & Schwartz, E. S. [26] model by considering the unit-linked (equity-linked) 

life insurance products contain a surrender option and with the involvement of 

any excess return (surplus) generated by the investments—i.e. a bonus option, and 

obtained the second order PDE   
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Model: 
 

 
       

   
   

  

  
 

  

  
  

  

  
    with the condition         for 

European style and         for American style           

Solution technique: solved using the Finite difference explicit method techniques.  

Conclusion(s): 

 The participating policies can be extremely sensitive to changes in the 

time to maturity, variations in the spread between the guaranteed interest 

rate and the market interest rate, and to modifications in the investment 

policy (volatility).  

Nielsen, B. F., Skavhaug, O., & Tveito, A. (2002) [96], introduced two 

numerical methods for solving Black-Scholes model of American options in the 

free and moving boundary.  

Model: 

 

 
       

      
  

  
 

  

  
               ̅                 with the following 

conditions 

                                 

  

  
|
   ̅   

     

      |   ̅       ̅     

                

                       ̅      

                                       where  ̅    is called free 

boundary 
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Solution technique: 

 Solved using front-fixing method. The simple idea of this method is to 

remove the moving boundary by change of variables, in turns out that this 

methodology leads to a nonlinear problem defined on a fixed domain. This 

nonlinear problem has been explained by implicit and upwind explicit 

difference schemes.   

 Penalty method- the basic idea of this technique to add a penalty term to 

the above problem there by obtained a nonlinear PDE defined on fixed 

domain. This nonlinear problem has been explained by implicit and 

upwind explicit difference scheme.  

Conclusion(s): 

 Computational effectiveness of the schemes differ considerably 

 Due to limitations on time steps of upwind explicit scheme, the explicit 

scheme is much slower than implicit methods. 

Oosterlee, C.W. (2003) [100], was replaced the supposed constant volatility with 

stochastic volatility and achieved a generalization of the Black-Scholes PDE as 

two dimensional PDE. 

Model: 

  

  
 

 

 
[   

   

      ̅   
   

    
    

   

   ]    
  

  
 [          ̃ √ ]

  

  
 

      with boundary conditions  

                                    [   ]  

                              [   ]  

 

Solution Technique: solution was achieved with the help of backward difference 

formula BDF2 
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Conclusion(s):  

 They choose Crank-Nicolson scheme (also called trapezoid rule) 

discretization, because of its L-stability eccentric and having more 

advantageous damping properties. 

 The time discretization exactness of this implicit scheme is second order. 

 With the acceleration technique, fast convergence is attained for an option 

pricing problem on grids with different grid sizes. The error of the 

discretization is determined by evaluation with reference solutions.  

Ikonen, S., & Toivanen, J. (2004) [71], transformed the generalized Black-

Scholes PDE of Oosterlee, C. W. [100], to a linear complementarity problem with 

initial and boundary conditions.  

Solution technique: solved this problem using operator splitting method, in this 

each time step is divided into two fractional time steps. In the first step a system 

of linear equations were solved while in the second step the early exercise 

constraint was prescribed by performing a simple update. 

Conclusion(s): 

 Studied the accuracy of the operators splitting methods in the numerical 

experiments and found out that their exactness was similar to the 

exactness of the PSOR method.  

 The splitting does not essentially raise the error.  

 The computed prices were in good arrangement with the prices available 

in the literature. 

 The time convergence of the Crank-Nicolson method was somewhat 

irregular while the time convergence for the L-stable BDF2 and Runge-

Kutta methods was sturdier.  

Cont, R., & Voltchkova, E. (2005) [31], extended the jump-diffusion model with 

finite jump intensity given by Andersen, L., & Andersen, J. [12], by considering 

infinite jump intensity (i.e., singular integral kernels)  and developed the 

following model. 
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In addition, they suggested an analysis of the convergence of the model which 

was lacking in Andersen, L., & Andersen, J. [12]. 

Model: 

  

  
             ]                                      ̃                 

where  

    
  

 
[
   

     
  

   
]  ∫   [                    

  

   
]    

  

  
  

     (
 

  
)  and      ,      initial stock price 

Solution technique: solved using explicit-implicit finite difference scheme 

Conclusion(s): 

 When the number of time/space steps is amplified. The performance is 

quite similar to the case of Black-Scholes model 

 The performance of the error (for a fixed grid size) as a function of 

maturity for a smooth one (forward contract) and a non-smooth one (put 

option).  

 A non-smooth initial condition leads to a lack of small T 

 Numerical convergence of a double barrier put price as the number N of 

space steps rises. 

Rodrigoa, M. R., & Mamon, R. S. (2006) [108], developed a model for the price 

of an option on a time dependent dividend-paying equity. 

Model:  

  

 
   

   

   
 

  

  
 [      ] 

  

  
        

with the conditions                              
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Solution technique:  

Using the transformations               ̅ ̅  ̅   ̅          ̅       ,  

 ̅   ̅ when    , the above model has transformed to PDE with constant 

coefficients  

 

 
  

  ̅ 
   

  ̅ 
 

  ̅

  ̅
    ̅

  ̅

  ̅
     ̅   

with terminal condition   ̅ ̅  ̅         ̅        

It was solved analytical in the similar lines of Black-Scholes model  

Conclusion(s): 

 Results indicates that the price of a European call option on a non-

dividend paying equity is decomposed as a product of three simple terms 

involving of a Black–Scholes price for the constant-coefficient case in a 

non-dividend-paying set-up, the ratio of two strike prices, and a modified 

factor reflecting the parametrised time. 

 This offered method can also be applied to other European-type options 

such as puts 

Cen, Z., Le, A., & Xi, L. (2007) [29], were applied hybrid finite difference 

scheme on a piecewise uniform mesh for a class of Black-Scholes equations 

governing option pricing which is path-dependent.  

Model:  

 

 
       

    
  

  
 [       ]

  

  
                            with the following 

conditions 

                               [                            

Solution technique: 

 Solved using hybrid finite difference scheme on a piecewise uniform 

mesh. In spatial discretization a hybrid finite difference scheme linking a 
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central difference method with an upwind difference method on a 

piecewise uniform mesh was used.  

 For time discretization, they used an implicit difference method on a 

uniform mesh.  

Conclusion(s):  

 On applying the discrete maximum principle and barrier function 

technique they proved that their scheme was second-order convergent in 

space for the arbitrary volatility and the arbitrary asset price. 

 For K = 1024 a sufficiently large special value they obtained second-order 

convergence in space.  

Xi, L., Cen, Z., & Chen, J. (2008) [132], presented a numerical method 

combining the Crank-Nicolson method in the time discretization with a hybrid 

finite difference scheme on a piecewise uniform mesh in the spatial discretization 

to solve Black-Scholes PDE.  

Model: they considered the model obtained by Cen, Z., Le, A., & Xi, L. [29]  

Solution technique: solved by combining the Crank-Nicolson method in the time 

discretization with a hybrid finite difference scheme on a piecewise uniform mesh 

in the spatial discretization. 

Conclusion(s):  

 The difference scheme is steady for the arbitrary volatility and arbitrary 

asset price.  

 They showed that the scheme was second-order convergent with respect to 

both time and spatial variables 

 This difference scheme can handle the degeneracy of the Black-Scholes 

differential operator at S = 0 without truncating the domain 

Company, R., Jodar, L., & Pintos, J. R. (2009) [30], developed non-linear 

Black-Scholes equation model for European vanilla call option pricing under 

transaction costs. 

Model:  
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   [   ] 

with following conditions 

      |                                               
      

             
    

where       √      

  
    

 (    [   (        
      

   )]). 

Solution technique: 

The above nonlinear problem transformed into another simpler nonlinear 

parabolic problem with bounded domain. 

Transformation:  

Using the substitution                   
  

 

 
                   , the above 

problem reduced to 
  

   
 [    (  

   
    

   
 )]   

    

   
               

   
  
   

 
 with initial-boundary conditions 

                                                                

The transformed partial differential equation has been solved using an explicit 

finite difference scheme. 

Conclusion(s): 

 The solution of scheme is positive, monotonically increasing in the space-

index 

 The parameter    has a direct influence in the steadiness condition 

 For     , the model becomes well known Black-Scholes PDE 
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 The numerical scheme was reliable i.e.: the exact hypothetical solution of 

the partial differential equation approximates well to the exact solution of 

scheme as the step sizes tends to zero 

 

Jump-diffusion mathematical models lead to partial integro-differential operators 

that are non-local, owed to the integral part. That their discretization yields full 

matrices makes various methods computationally too expensive. Andersen, L., & 

Andersen, J. [12], and Ikonen, S., & Toivanen, J. [71], have considered numerical 

methods for jump-diffusion mathematical models based on the linear 

complementarity problem and variational inequality formulations, through finite 

difference discretization. One of the central objectives of those studies has to 

advance computational efficiency by using second-order exact discretizations and 

faster ways to handle the integral operator. Toivanen, J. (2010) [122], derived a 

numerical method based on the free-boundary formulation for pricing American 

options in jump-diffusion models with finite jump activity. For easiness, he 

considered only American put options; similar methods can easily be resultant as 

well for American call options when the underlying asset paying dividends 

constantly. His front-tracking method achieves an implicit finite difference 

discretization on time-dependent non-uniform grids refined near the expiry and 

free boundary. For interpolations amongst grids and the construction of finite 

difference stencils, Lagrange interpolation polynomials were used. It gives an 

easy way to implement fourth-order accurate discretization as well. A non-linear 

system of equations is solved using Brent’s root-finding method, which is easy to 

use, robust and efficient at each time step. An improvement of that formulation is 

that it was easy to develop higher-order methods by tracking the location of the 

free boundary and then by refining grids sufficiently near the free boundary, 

where the solution is less steady. Also, suggested second-order and fourth-order 

perfect discretization with respect to the number of time and space steps. The 

numerical tests confirmed that these convergence rates are attainable under the 

Black–Scholes model. 
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Model:  

  

  
  

 

 
     

   

    (   ̃  )  
  

  
 (   ̃)   ̃ ∫  (     )   (  )          

      [         

If  ̃   , the above model will reduces to the standard Black-Scholes PDE [24] 

Solution technique:  

Solved based on the free-boundary formulation for pricing American options 

under jump-diffusion models with finite jump activity. For simplicity, he 

considered only American put options; similar methods can easily be derived as 

well for American call options when the underlying asset paying dividends 

continuously. His front-tracking method performs an implicit finite difference 

discretization on time-dependent non-uniform grids refined near the expiry and 

free boundary.  

For interpolations between grids and the construction of finite difference stencils, 

Lagrange interpolation polynomials were used.  

Conclusion(s): 

 An advantage of this formulation is that it is easy to develop higher-order 

methods by tracking the location of the free boundary and then by refining 

grids sufficiently.  

 This gives an easy way to implement fourth-order accurate discretization 

as well.  

 At each time step, a non-linear system of equations is solved using Brent’s 

root-finding method, which is easy to use, robust and efficient near the 

free boundary, where the solution is less regular. 

Sophocleous, C., & Leach, P. G. L. (2010) [115], solved the commodity price 

models analytically 

Model: considers the one-factor, two-factor, and three-factor commodity price 

models given by Schwartz, E. S. [111] 
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Solution technique: solved these equations using Lie point symmetries and 

obtained analytical solution 

Tangman, D. Y., & et al. (2011) [119], developed a model for pricing fixed-

strike arithmetic Asian options under the Black–Scholes model and obtained the 

following model 

Model:  

  ̅

  
 

 

 
       ̅

           
  ̅

  
   ̅  (

    

   
)

  ̅

   
                  

            

with the following conditions 

  ̅           [          ]   
  ̅

  
     ̅ as       

   ̅

      as       

                                                                   

Solution technique: 

 The methodology uses the exponential time integration (ETI) scheme in 

combination with a dimensional splitting technique. They have chosen to 

implement this time stepping scheme though ETI can be expensive over 

very refined meshes. 

Conclusion(s):  

 Showed that precise Asian option prices can be obtained by using 

dimensional splitting, which involves a spectral or a central discretization 

in the asset price, a Hermite interpolation beside the average quantity and 

a Strang splitting strategy within the ETI framework developed.  

 They have designated how to obtain at least second-order convergent 

solutions for Asian options with multiple features using the Black–Scholes 

model, the jump-diffusion model and CGMY processes.  
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Yun, T. (2011) [136], developed a model for price changing of commodities 

under the assumption that the rising price of commodity immediately effect the 

price of its relying products without any delay. 

Model: 

  

  
   

   

      

where;       is an equilibrium state 

 The initial-boundary conditions are: 

         
                               

    
   

  
       

            ̇                             

      
  

  
 

[               ]

   
    

                                 

Solution technique: solved the above problem using the substitution        

           and hence obtained the solution is            
(
   
 

   
)   (

 ̇  

   
) 

 

Conclusion(s):  

 Equivalence to heat diffusion equation, the price changing diffusion 

equation was obtained via the description of Newton’s second law 

 The major dissimilarity between the above equation and heat diffusion 

equation was that  the constant can be measured and is known as a given 

constant in heat equation, while herein the constant    is tough to be 

measured and is treated to be an unknown constant  and has given by  

   
    ̇  

(   
 )

   

 When the price varying declines then the substitution can be replaced by 

                   to get the solution. 
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 Fadugba, S., Nwozo, C., & Babalola, T. (2012) [48], they underwent to the 

comparative study of the convergence of the two numerical methods to the Black-

Scholes price of European options. 

Model:  

Considered the standard Black-Scholes PDE [24] 

Conclusion(s): 

 Both the numerical methods have its advantages and disadvantages of use: 

finite difference method converges faster and more accurate, they are 

fairly robust and good for pricing vanilla option. They can  also  require  

sophisticated  algorithms  for  solving  large  sparse  linear  systems  of  

equations  and  are relatively difficult to code.  

 Monte Carlo method works effectively for pricing both European and 

exotic options, it is flexible in handling varying and even high dimensional 

financial problems, hence in spite of its significant progress, an early 

exercise is problematic.  

 Crank Nicolson method is unconditionally steady, more précised and 

converges faster than Monte Carlo method when pricing European option. 

Nwozo, C. R., & Fadugba, S. E. (2012) [98], they underwent to the comparative 

study of the convergence of the three methods to the Black-Scholes price of 

European options. 

Model: Considered the standard Black-Scholes PDE [24] and Binomial model  

Solution technique: Monte Carlo method and Finite difference method (Crank-

Nicolson) and with the results of Binomial model  

Conclusion(s): 

 Binomial models are good for pricing options with early exercise 

opportunities and they are relatively easy to implement but can be quite 

tough to adjust to more complex functions. 
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 Finite difference methods converge quicker and more accurate; they are 

fairly tough and good for pricing vanilla options where there are 

possibilities of early exercise. 

 Monte Carlo method works perfectly for pricing European options, 

approximates every arbitrary exotic options, it is flexible in handling 

varying and even high dimensional financial problems. 

 Crank Nicolson method is unconditionally steady, more perfect and 

converges faster than Binomial model and Monte Carlo method when 

pricing European option. 

 Monte Carlo method is good for pricing the path dependent options 

Kumar, A., Waiko, A., & Chakrabarty, S. P. (2012) [79], developed a model 

for the pricing of arithmetic average strike Asian call option and obtained the 

following model: 

Model: 

 

 
       

      
  

  
 

  

  
  

  

  
      

where         =Asian call option price;      ∫        
 

 
 

The above problem is three dimensional which leads to greater computational 

expenses. This inspires the reduction of higher dimension problem into lower 

dimension. 

Transformation:  

 ̅    
 

    
∫       

 

 
  

Let             ̅  ̅    for some function  ̅  ̅    by substituting this the above 

equation reduces to    

 

 
   ̅    ̅

  ̅       ̅ 
  ̅

  ̅
 

  ̅

  
    with the following conditions: 

 ̅  ̅          (  
 

 
 ̅     )   
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 ̅  ̅              ̅         

  ̅

  
 

  ̅

  ̅
             ̅        

Solution technique:           

Crank-Nicolson Implicit Method (CNIM) and Higher Order Compact (HOC) 

which is fourth order finite difference scheme      

Conclusion(s):       

The results attained by both the methods were excellent agreement with Monte 

Carlo results     

For very small values of σ, the results attained using HOC Scheme are more 

accurate compared with the Crank-Nicolson Implicit method.    

Yun, T. (2012) [137], studied the application of the instant diffusion equation to 

the calculation of strategy on changing of owning shares or currencies. The 

strategy of selling share(s) with maximum altering rate of price-ratio and 

purchasing share(s) with lowest altering rate of price-ratio (SMaPMi) was 

calculated by instant diffusion equation with multiple sources of stock-price 

changing.  

Model: considered the same model of Yun, T. [136] 

where        = represents the price of commodity ‘x’ at time ‘t’ due to a raising 

price changing source at   ; The diffusion with beginning at time     and end at 

the time     changes an old equilibrium state to a new equilibrium state. 

(i)   (    
 )                

(ii) 
   

  
 

[  (    
 )   (    

 )]

  
 

[  (    
 )   (    

 )]

 
  ̇              

(iii) 
   

  
        

[            (    
 )]

    
    

               

Solution technique: solved the above problem using the substitution         

                  and hence obtained the solution is 



Chapter-2                                                                                                   Literature Survey 

30 
 

             
(
   
 

   
)(    ) (

 ̇  

   
) 

 

Conclusion(s):  

 SMaPMi is well-matched for short term speculation, if operator is proper.  

 Diffusion is a process from the beginning of a breaking of an old stability 

state to the end of a new stability state due to inertia. The calculation of 

approach of SMaPMi based on diffusion equation of multiple sources, was 

suited for time t ≥ 0+ (the end of the new equilibrium state) if no new 

breaking facto acting. 

 SMaPMi is also suited for changing of currencies. 

Esekon, J. E. (2013) [41], studied the hedging of derivatives in illiquid markets 

and derived a nonlinear Black-Scholes equation given by 

  

  
 

 

 
       

   (       
   

   )  
 

 
       

      (
   

   )
 

   
  

  
       

If          this corresponds to no slippage and the model moderates to 

 
  

  
 

 

 
       

   (       
   

   )    
  

  
      

If      then the model reduces to  

  

  
 

 

 
       

   (       
   

   )     

If        then the asset’s price monitors the standard Black-Scholes model with 

constant volatility 

Solution technique: assumed the solution of a forward wave, a classical solution 

for the nonlinear Black-Scholes equation was found. 

Conclusions: 

The solution of this model supports all the suppositions of Black-Scholes model 

[24], that the option is more volatile than the stock. 
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Allahviranloo, T., & Behzadi, Sh. (2013) [8], solved the standard Black-

Scholes, using non-discretization techniques. 

Model: considered the standard Black-Scholes [24] equation 

Solution Technique: solved the Black-Scholes equation using Adomian 

decomposition method, Modified Adomian decomposition method, Variational 

iteration method, Modified Variational iteration method, Homotopy perturbation 

method, Modified Homotopy perturbation method, and Homotopy analysis 

method. 

Conclusion(s): Homotopy analysis method was the faster convergent method than 

the other considered methods. 
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2.1 CONCLUSION 

In the literature it is found that Black-Scholes (BS) equation (used to find option 

price in securities market) has been solved by discretization techniques such as 

Finite Difference and Finite Element Methods and non-discretization techniques 

such as Adomian Decomposition Method, Variational Iteration Method, 

Homotopy Perturbation Method and Homotopy Analysis Method.  

It has also been observed that solution of the commodity price models (used to 

find future prices for commodity products) have been solved using discretization 

techniques. In these techniques the calculations become cumbersome and these 

techniques are quite difficult to handle by market traders. It has been observed 

that modeling of spot and future commodity price models have been used in the 

international commodity products. Very few Indian commodity products are 

covered under these models.  

2.2 OBJECTIVE 

In this investigation we shall try to solve the nonlinear Black Scholes equation 

(Esekon [41]) using the analytical methods like (i) First Integral Method, (ii) 

Tanh-Coth Method and (iii) Sine-Cosine Method. These methods are found to be 

powerful in solving nonlinear partial differential equations (NPDE). 

We shall also study the applicability of approximate solution techniques like (i) 

Adomian Decomposition Method, (ii) Variational Iteration Method, (iii) 

Homotopy Perturbation Method and (iv) Homotopy Analysis Method to solve 

PDE equations occurring in commodity price models. These techniques give 

results what are in close agreement with the exact solutions. These techniques 

would be easy to understand and apply at market traders’ level.  
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CHAPTER-3 

SOLUTION TECHNIQUES 

These methods are going to be used in the following chapters. 

3.1 ADOMIAN DECOMPOSITION METHOD (ADM) 

Adomian decomposition method was introduced by Adomian [5], and in the 

literature it is found that it is effective and reliable for applying ordinary (Biazar 

& et al. [20], Fadugba [46], Fadugba & et al. [47]), partial differential equations 

of linear (Ali [7], Bohner [25], Lesnic [81]), non-linear (Adomian [6], Behirya & 

et al. [16], El-Wakil & et al. [40], Ghoreishi & et al. [52], Luo & et al. [89], 

Montazeri [93]), and fractional differential equations (Safari & Danesh [110], Wu 

& et al. [131]). In the literature it is also found that modified ADM (Eltayeb [39], 

Hasan & Zhu [57], Hosseini [69], Jiaoa & et al. [76], Vahidi & Kordshouli [123].   

The Adomian decomposition method is applied to the following general non-

linear equation  

          ⏞                                                                               (3.1) 

where   is the unknown function,    is the highest order derivative operator which 

is assumed to be easily invertible,   is the remaining linear differential operator of 

order less than  ,     represents the nonlinear terms and  ⏞  is the source term. 

 Applying the inverse operator     to both sides of equation (3.1) we obtain 

          [ ⏞]     [  ]     [  ]          (3.2) 

where    the constant of integration is satisfies the condition      
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Assume that the solution    can be represented as infinite series of the form 

  ∑   
 
                            (3.3) 

Furthermore, suppose that the non-linear term         can be written as 

infinite series in terms of the Adomian polynomials    of the form 

   ∑   
 
                            (3.4) 

where    are Adomian polynomials (Biazar & Shafiof [19]) of    can be 

determined formally as follows 

   
 

  
 [

  

   
 { (∑    

     )}]
   

                       (3.5) 

The first three Adomian polynomials are: 

          

   [
 

  
         ]

   
    

       

   
 

 
[
 

  
{          

         }]
   

    
      

  
 

  
         

   
 

 
[
 

  
{          

          
         

 

  
           }]

   
    

         
           

       
  

 

  
                             (3.6) 

Substituting (3.3)-(3.6) in (3.2) gives 

∑       
      [ ⏞]     [ {∑   

 
   }]     [∑   

 
   ]                          (3.7) 

3.2 VARIATIONAL ITERATION METHOD (VIM) 

The Variational Iteration Method (VIM), proposed by He ([59], [60]) and was 

applied successfully to autonomous ordinary differential equations (Khader [77]), 

nonlinear systems of partial differential equations (Abdou [4], Bildik & 

Konuuralp [23], Duangpithak [34], Duangpithak & Torvattanabun [35], Ganji & 

et al. [50], Ghorbani & Saberi-Nadjafi [51], Golbaba & Javidi [53], He [61], [62], 

He [63], [65], He & Wu [66], [67], Javidi & Golbabai [74], Li [82], Liu & et al. 
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[88], Momani & Abuasad [92], Sadighi & Ganji [109], Soliman [113], Soliman & 

Abdou [114], Tatari & Dehghan [121], Wazwaz [128]-[130], Yusufoglu [138]), 

nonlinear differential equations of fractional order (Abbasbandy [1], Inc [72], 

Odibat [99]) and integro-differential equations (Sweilam [116], Xu [134], Yousefi 

& et al. [135]).  

 

Consider the following differential equation 

       ⏞                                                                                (3.8) 

where   is linear operator,   is nonlinear operator and  ⏞ is a known real function. 

According to VIM, we can construct a correction functional,      as follows:  

           ∫  {          ̃     ⏞    }    
 

 
                  (3.9) 

where   is the general Lagrange multiplier,    is an initial approximation,   ̃ is 

the restricted variation, i.e.    ̃   .  The optimal value of the general Lagrange 

multipliers   can be identified by using the stationary conditions of the 

variational theory.  

For sufficiently large values of n we can consider    as an approximation of the 

exact solution. 

3.3 HOMOTOPY PERTURBATION METHOD (HPM) 

Homotopy Perturbation Method was proposed by He [64] and the detailed 

applications of this method can be found in Liao [83]. 

Let us consider the nonlinear differential equation,  

      ⏞                                  with boundary conditions,                 (3.10) 

 (  
  

  
)                                                                                                   (3.11) 

where   is differential operator,   is boundary operator,  ⏞     is an analytic 

function,   is the boundary of the domain  . 
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The operator,   has been divided in to two parts,   and    where   is linear, and 

  is nonlinear.  

Equation (3.10) can be written as,            ⏞                              (3.12) 

Construct a homotopy            [   ]    which satisfies  

             [           ]    [       ⏞    ]   ,               (3.13a) 

or 

                             [       ⏞    ]           (3.13b) 

where    ,   [   ] is an embedding parameter,    is an initial approximation 

of equation (3.10), which satisfies the boundary conditions. From equation (3.13), 

we obtain 

                              

                ⏞                   

The process of changing   from zero to unity is just that of         from 

      to     .   

This process is called deformation in topology,              and       

 ⏞     are called homotopic.  

From equation (3.13), it can be written as, 

      
     

      
                                                                          (3.14) 

For    , the approximate solution of equation (3.10),  

              
     

      
                                                     (3.15) 

The present homotopy perturbation method is obtained with the combination of 

perturbation method and the homotopy method. The rate of convergence of 

homotopy perturbation method depends upon the nonlinear operator      . 
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3.4 HOMOTOPY ANALYSIS METHOD (HAM) 

Homotopy Analysis Method was proposed by Liao [84], and given a detailed 

explanation about the choice of convergence control parameter by Liao [87]. The 

applicability of HAM was found in the literature (Abbasbandy [2], Abbasbandy & 

Jalili [3], Alomari & et al. [9], Das & et al. [32], Dinarvand & et al. [33], Esmail 

& Habibolla [43], Ezzati & Aqhamohamadi [44], Fadravi & et al. [45], Gupta & 

Gupta [56], Hashmi et al. [58], Liao [86], Mustafa [94], Nik & Shateyi [97]).    

Consider the differential equation  [    ]            (3.16) 

where   is called nonlinear operator,   is an unknown function in the 

independent variables  

Construct a zeroth-order deformation equation,  

      [            ]            [         ]                        (3.17)  

where   [   ] is the embedding parameter,      is called convergence 

control parameter,   is called an auxillary linear operator,           is called an 

unknown function,    is an initial guess of      and      represents a non-zero 

auxillary function. For     and     from the equation (3.17) we obtain, 

                                  respectively. 

As   increases from 0 to 1, the solution           varies from    to     . On 

expanding the function           in Taylor’s series with respect to   we obtain, 

                ∑         
                                   (3.18)  

where        
 

  
(
            

    )
   

                                  (3.19) 

The convergence of (3.18) depends upon the convergence control parameter   . If 

convergence is obtained at     we obtain, 

        ∑       
                                            (3.20) 

Differentiate the equation (3.17), m-times with respect to   and the dividing them 

by    and by setting      we obtain the m
th

-order deformation equation: 
 
 

 [               ]         ⃗⃗                                                       (3.21) 
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where     ⃗⃗      
 

      

     [         ]

     ]
   

  and     {
           
             

      (3.22) 

3.5 FIRST INTEGRAL METHOD (FIM) 

First Integral Method was proposed by Feng [49] and many of the researchers 

shown its efficacy in various fields tested by Biazar & Aslanpanah [18], El-

Ganaini [37], El-Sabbagh & El-Ganaini [38], Eslami & et al. [42], Hosseini & et 

al. [68], Raslan [107], Sharma & Kushel [112], Taghizadeh [117], Taghizadeh & 

et al. [118], Tascan & Bekir [120]. 

Consider the nonlinear partial differentia equation  ̅(                 )                                                         

                                                                                                                          (3.23) 

where      is the solution of the above equation (3.23).  Let us use the 

transformations  

        ⏞                 where     is constant                      (3.24) 

Using chain rule, we obtain  

 

  
      

 

  
    

 

  
    

 

  
          

  

   
    

  

   
                                    (3.25) 

On Substituting (3.25) in (3.23), we obtain the ODE  

 ⏞ ( ⏞   ⏞   ⏞    )              (3.26) 

On, introducing new independent variables       ⏞        ⏞             (3.27) 

Using (3.26) and (3.27), we obtain a system of ODEs 

{
          

        (           )
                                      (3.28) 

Using the qualitative theory of ordinary differential equations, then the general 

solutions to (3.28) can be obtained directly. Though, in general, it is very difficult 

for us to realize this even for one first integral, because for a given plane 

autonomous system, there is no systematic theory that can tell us how to find its 

first integrals, nor is there a logical way for telling us what these first integrals 
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are. So, we apply the Division Theorem to obtain one first integral to (3.28) which 

reduces (3.26) to a first order integrable ODE. Then, an exact solution to (3.23) is 

obtained by solving this equation. Now, let us recall the Division Theorem: 

Division Theorem: Suppose that      and      are polynomials of two variables 

in  [ ] and      is irreducible. If      vanishes at all zero points of     , then 

there exists a polynomial       in  [ ] such that 

                   

3.6 Tanh-Coth METHOD 

The extension of Tanh method is called Tanh-Coth method proposed by Bekir & 

Cevikel [17]. In the literature it is found that both tanh and its extension methods 

are powerful in solving the nonlinear partial differential equations (Alquran [11], 

Baldwin & et al. [14], Baldwin [15], El-Borai & et al. [36], Gozukizil & Akcagil 

[54], Lee & Sakthivel [80], Malfliet [90], Parkes & Duffy [104], Wazwaz [127], 

Zayed & Abdelaziz [140]).    

Let us consider a nonlinear equation  ̅(                 )                  (3.29) 

Let us assume that           where     is constant, so that       ⏞                                                  

which implies, 
 

  
   

 

  
 
 

  
 

 

  
 

  

   
 

  

    
  

   
 

  

                             (3.30) 

On substituting (3.30) in the equation (3.29), we obtain 

 ⏞ ( ⏞   ⏞   ⏞    )     which is an ODE                                                     (3.31) 

If every term of equation (3.31) has derivatives with respect to    then by 

integrating this equation, and by assuming that the constant of integration is zero, 

we obtain a simplified ODE. 

Let us consider                                                                                       (3.32) 

Using (3.32) the derivatives in right hand side of (3.30) will leads to, 
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                 (3.33) 

Let      is in the form, 

 ⏞     ∑    
  ∑

  

  
 
   

 
                                                                            (3.34) 

where   is an positive integer, will be determined by equating the powers of  . In 

most of the cases,   will be positive integer, otherwise a transformation formula 

will be used to overcome this difficulty. 

3.7 Sine-Cosine METHOD 

Sine-Cosine method is the extension of the Sine-function method and it was 

proposed by Alquran & Al-Khaled [11]. It is proved in the literature that it is 

effectively applicable in various fileds of engineering and science to get the exact 

solution of ordinary and partial differential equations (Alquran [10], Arbabi & 

Abadi [13], Bibi & Mohyud-Din [21], [22], Jaafar & Jawad [73], Guner & et al. 

[55], Najafi & et al. [95], Rab & Akhter [105], Wazwaz [126], Xie & Tang [133], 

Zayed & Abdelazi [139]). 

Let us consider a nonlinear equation  ̅(                 )                  (3.35) 

Let us assume that           where     is constant, so that       ⏞      

which implies, 
 

  
   

 

  
 
 

  
 

 

  
 

  

   
 

  

    
  

   
 

  

               (3.36)                                                         

On substituting (3.36) in the equation (3.35), we obtain 

 ⏞ ( ⏞   ⏞   ⏞    )     which is an ODE                                                     (3.37) 

Integrate the equation (3.37) as many times as possible with respect to    and 

setting the constant of integration is zero, we obtain a simplified ODE. 

Let us consider the solution is of the form 
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     {
          

  
          

                                                                                      (3.38) 

where        are constants need to be determined. 

Using (3.38) the derivatives in right hand side of (3.36) will leads to, 

              ,  

                  , 

(     )
 
                  

         , 

 (     )
  

      
                   

                        (3.39a) 

or 

               ,  

                  , 

(     )
 
                   

         , 

(     )
  

      
                   

                        (3.39b) 

where        and  , parameters need to be determined. Substitute the equation 

(3.39a) or (3.39b) in (3.37), and balancing the exponents of the trigonometric 

functions cosine or sine, collecting all the terms with same power  in             

or            and equate their coefficients to zero we obtain a system of 

algebraic equations among the unknowns        and  . These values will be 

determined using computerized symbolic calculations. 

3.8 TECHNICAL COMPUTING SOFTWARE 

To apply ADM, VIM, and HAM techniques we developed specially designed 

codes in MATLAB programming language.  
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We also have used the well-developed codes in Maple to verify the solutions 

using Tanh-Coth method and Sine-Cosine method.   
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CHAPTER-4 

BLACK-SCHOLES EQUATION AND ITS SOLUTION 

Let us consider the nonlinear Black-Scholes equation (Esekon [41]) with 

          

  

  
 

 

 
       

   (       
   

   )    
  

  
                                  (4.1) 

Differentiate the equation (4.1) twice with respect to  , we obtain 

  

  
 

    

 
         

   

        
   (

  

  
)
 

              
  

  
   

  

  
 

                                     (4.2) 

where   
   

   
 

Using the transformation   
 ̅

   
 and        , the equation (4.2) reduces to 

  ̅

  
 

  

 
     ̅ 

   ̅

   
    (

  ̅

  
)
 

 
  

 
     ̅ 

  ̅

  
  

  ̅

  
                        (4.3) 

Again using the transformation  ̅  
   

 
, the equation (4.3) further reduces to 

  

  
 

  

 
{

 

  
(  

  

  
 

 

 
   

  

  
  )}                                   (4.4) 

Equation (4.4) is a nonlinear PDE with constant coefficients. 
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4.1 SOLUTION OF NONLINEAR BLACK SCHOLES EQUATION USING 

FIRST INTEGRAL METHOD  

Let us consider the transformation          where     is constant 

Using (3.25)-(3.28), the equation (4.4) can be written as, 

  

 
    

  

 
          

  

 
                                          (4.5)

where        and                    

                                                           (4.6a) 

   
 

  

 

 
[ 

  

 
          

  

 
  ]                                (4.6b) 

Let us suppose that        , then the equations (4.6a) and (4.6b) becomes 

                     (4.7a) 

                             (4.7b) 

where    
 

    

Let us assume that        and        are non-trivial solutions of 

equations (4.7a), (4,7b) and  

       ∑         
    is an irreducible polynomial in the complex domain 

 [   ] such that 

 (         )  ∑   (    )       
                     (4.8) 

where                   are the polynomials in   and        .  Equation 

(4.8) is called the first integral to equation (4.7a)-(4.7b), due to Division theorem, 

there exists a polynomial              in the complex domain  [   ] such 

that 

  

  
 

  

  

  

  
 

  

  

  

  
               {∑   (    )       

   }          (4.9)  

Suppose that     in the equation (4.8) and compare the coefficients of 

             on both sides of (4.9), we obtain 
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                                            (4.10a) 

    
                                          (4.10b) 

                   (4.10c) 

From (4.10a), we conclude that       is constant and         . For 

simplicity, let us consider        .  

From (4.10b), it concludes that    (     )     (     ).  

Using       and       values, from (4.10b), it can be written as,  

   
                                           (4.10d) 

From (4.10d), it can be concluded that       is not a polynomial. 

Hence, due to lack of polynomial      , FIM will not be applied to solve the 

nonlinear Black-Scholes equation. 

4.2 SOLUTION OF NONLINEAR BLACK SCHOLES EQUATION USING 

Tanh-Coth METHOD  

Let us consider the transformation          where     is constant 

Using (3.30)-(3.33), the equation (4.4) can be written as 

  

 
  

   

    
  

 
 (

  

  
)
 

      
  

  
 

  

 
  

  

  
             (4.11) 

Integrating the equation (4.11) on both sides, 

  

 
  

  

  
        

  

 
                        (4.12) 

From (4.12), by balancing the nonlinear term (  
  

  
) with the highest order liner 

term it can be concluded that   will not be a positive integer. 

Hence, due to lack of a positive integer value of  , the tanh-coth method will not 

be applied to solve the nonlinear Black-Scholes equation. 
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4.3 SOLUTION OF NONLINEAR BLACK SCHOLES EQUATION USING 

Sine-Cosine METHOD  

Let us consider              and from the equation (4.11), we obtain 

                                
                

      
               

  

 
    

                      

  

 
   

                        
                                     (4.13) 

From (4.13), equating the exponents      and     yields 

        , so that       

It needs to be noted that, on equating the exponent pairs        we obtain 

the same value of    .  

Setting the coefficients to zero yields, 

                 
    

  

 
   

                    (4.14a) 

                  
                 (4.14b) 

 
  

 
    

               (4.14c) 

From (4.14c), we obtain either     or      

In both the cases we obtain the zero solution. 

4.4 CONCLUSION 

Literature survey shows that nonlinear equations may be solved using Tanh-Coth, 

Sine-Cosine, and FIM methods.  As a part of this study, a particular non-linear 

Black-Scholes equation (Esekon [41]) is selected to examine its validation using 

above methods.  

The results show that, while balancing of exponents using Tanh-Coth method, the 

positive integer (M) could not be obtained, hence, Tanh-Coth method is not 

suitable for its application. Secondly, while using Sine-Cosine method, during 



Chapter-4                                                               Black-Scholes Equation and its Solution 

 

47 
 

balancing exponents, β happens to be 1, that supports application of method, 

however, the solution happens to be trivial that challenging efficacy of the process 

of validation.  Similarly, during the application of FIM method, nonexistence of 

integral polynomials happens to be the distinct short coming of the method. 
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CHAPTER-5  

ONE FACTOR COMMODITY PRICE MODEL AND ITS 

SOLUTION 

5.1 ONE FACTOR COMMODITY PRICE MODEL 

The One Factor Commodity Price Model equation is 

  
 

 
       (   ̃       )                  (5.1) 

with the erminal boundary condition         .        (5.2) 

The closed form solution of the above equation (5.1) along with (5.2) is given by 

Schwartz [111]. 

          [                  (  
  
 

  
  ̃)  

  
 

  
         ]     (5.3) 

5.2 SOLUTION OF ONE FACTOR COMMODITY PRICE MODEL 

USING ADM 

To obtain the approximate solution to equation (5.1) along with (5.2), according 

to ADM, we can write as follows 

            [
  
 

 
       (   ̃       )   ]                    (5.4) 

                   (5.5) 

     ∫      
 

 
  for                                       (5.6) 
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5.3 SOLUTION OF ONE FACTOR COMMODITY PRICE MODEL 

USING VIM 

Using (3.8)-(3.9), the equation (5.1) can be written as  

     

        ∫  {
        

  
 

  
 

 
           

   
  (   ̃       ) 

        

  
 }    

 

 
  (5.7) 

      

          ∫  {
        

  
 

  
 

 
      ̃     

   
  (   ̃       ) 

   ̃     

  
 }    

 

 
      

                                                                                                                            (5.8) 

                ∫  {
        

  
 }    

 

 
                                                        (5.9) 

                     ∫              
 

 
       (5.10) 

which yields the stationary conditions 

                                     (5.11) 

Substituting the value of        into the functional (5.7) give the iteration 

formulas 

             ∫ {
        

  
 

  
 

 
           

     (   ̃       ) 
        

  
 }    

 

 
                

                                                                                                                          (5.12) 

5.4 CONVERGENCE OF SOLUTION OF ONE FACTOR COMMODITY 

PRICE MODEL  

5.4.1 Convergence of solution of One Factor Commodity Price Model using 

VIM has been verified as given in the following theorem developed in our 

investigation. (Pannala [101]) 
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Let us consider the functions defined as                             , and 

                are Lipschitz continuous with |            
  |  

   |    | |            
  |     |    | and |            

  |  

   |    |  

Theorem 5.1: The solution         obtained from (5.12) converges to the 

solution of problem (5.1) when         and         where       

{|   |    |   |    | |   } and     {          }           

Proof:               ∫ {
        

  
 

  
 

 
           

     (   ̃  
 

 

     ) 
        

  
 }     

                   ∫ {
        

  
                       

 

 

         }                                                                                                      (5.13) 

where     
  
 

 
 and      (   ̃)   

               ∫ {
       

  
                             }    

 

 
   (5.14) 

Let                                                      

|      
  |      |       |. Since    is a decreasing function with respect 

to     from (5.13), (5.14) and mean value theorem we obtained, 

                  ∫ [
      

  
    {              }   {        

 

 

      }    {              }]       

                  ∫        
 

 
 {|   |    |   |    | |   } ∫ |  |  

 

 
  

                           {|   |    |   |    | |   } ∫ |  |  
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                           {|   |    |   |    | |   }  |       |  

          {          } |      
  |  

where       , hence               |      
  |, therefore,  

‖    ‖         |    |            |  |     ‖  ‖  

Since,         , then ‖  ‖   . 

5.4.2 Convergence of solution of One Factor Commodity Price Model using 

ADM 

Define    {

||    ||

||  ||
            ||  ||   

                           ||  ||   
   if                   then 

according to Hosseini [70], ∑   
 
    converges to the exact solution  .     

5.5 NUMERICAL EXAMPLES 

Example 5.1: Consider                     ̃    in the equation (5.1)  

Then using (5.4)-(5.6), we obtain the following approximants  

      

        (       
 

 
)  

    
     (                         )

   
  

    
                    (                         )

    
  

   
     (                                                             )

     
    (5.15) 

Adding all the approximants in (5.15) we obtain the approximate solution of (5.1) 

for n=4, as 
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       [       (       
 

 
)  

     (                         )

   
   

                    (                         )

    
 

     (                                                             )

     
 ]                  (5.16) 

Example 5.2: Solved the example 5.1 using VIM 

We obtain the following approximant with four iterations 

        

(
   (                         )

   
    (       

 

 
)  

   (                                                             )

     
 

                  (                         )

    
   )     

5.6 SOLUTION OF ONE FACTOR COMMODITY PRICE MODEL 

USING HAM, AND HPM 

5.6.1 SOLUTION USING HAM:  

Using                         ̃        we obtain the following 

polynomial in        with the help of MATLAB for n=4,                     

     (                     
              

              
     

         
              

                
              

     

           
                 

                (           

     (                                           )  

                     )                               
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    )                      (5.17) 

where    is called convergence control parameter.  

5.6.2 SOLUTION USING HPM 

If      , then HAM will be in the form of HPM as proposed by Liao [85]. 
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5.7 RESULTS AND DISCUSSION 

5.7.1 RESULTS  

The following tables: 5.1 to 5.3, are prepared with various parameter values for 

Crude Oil data of the model Schwartz [111], using ADM and VIM 

Table 5.1 represents the absolute errors obtained against exact Crude oil future 

prices with                         ̃        for various iterations 

    

Exact 

solution 

Absolute 

error for n=4 

Absolute 

error for n=7 

Absolute 

error for 

n=10 

Absolute 

error for 

n=15 

19.5 0 19.5 3.55E-15 3.55E-15 3.55E-15 3.55E-15 

20 0.2 20.39393 2.69E-07 1.71E-12 7.11E-15 7.11E-15 

20.5 0.4 21.21941 7.53E-06 7.40E-10 4.05E-13 3.55E-15 

21 0.6 21.97683 4.85E-05 2.64E-08 3.54E-11 0 

21.5 0.8 22.6676 0.000166741 3.33E-07 8.40E-10 0 

22 1 23.29393 0.000390394 2.36E-06 9.62E-09 4.12E-13 

22.5 1.2 23.85861 0.000672286 1.16E-05 6.91E-08 7.28E-12 

23 1.4 24.36487 0.000803582 4.45E-05 3.57E-07 8.08E-11 

23.5 1.6 24.81623 0.000305903 0.000140893 1.44E-06 6.27E-10 

 

Table 5.2 represents the absolute errors obtained against exact Crude oil future 

prices with                         ̃        for various iterations 

    

Exact 

solution 

Absolute 

error for n=4 

Absolute 

error for n=7 

Absolute 

error for 

n=10 

Absolute 

error for 

n=15 

13 0 13 5.33E-15 5.33E-15 5.33E-15 5.33E-15 

13.5 0.2 14.40627 8.60E-06 1.14E-09 1.95E-14 5.33E-15 

14 0.4 15.65393 0.000260708 2.14E-07 1.66E-10 3.55E-15 
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14.5 0.6 16.74017 0.001810017 3.45E-06 2.22E-08 2.03E-12 

15 0.8 17.67096 0.006734248 1.47E-05 6.56E-07 2.71E-10 

15.5 1 18.45785 0.017465934 2.15E-05 8.53E-06 1.10E-08 

16 1.2 19.11531 0.035265405 0.000512081 6.56E-05 2.11E-07 

16.5 1.4 19.65897 0.058047464 0.002995401 0.000349 2.37E-06 

 

Table 5.3 represents the absolute errors obtained against exact Crude oil future 

prices with                         ̃       for various iterations 

    

Exact 

solution 

Absolute 

error for n=4 

Absolute 

error for n=7 

Absolute 

error for 

n=10 

Absolute 

error for 

n=15 

16.8 0 16.8 0 0 0 0 

17 0.2 17.21419 6.51E-08 2.94E-11 7.11E-15 7.11E-15 

17.2 0.4 17.57762 3.92E-06 7.56E-09 7.43E-13 3.55E-15 

17.4 0.6 17.89473 4.27E-05 1.93E-07 4.22E-11 1.07E-14 

17.6 0.8 18.16992 0.000230914 1.90E-06 4.86E-10 4.26E-14 

17.8 1 18.4074 0.00084802 1.11E-05 1.97E-10 2.54E-12 

18 1.2 18.61119 0.002437919 4.63E-05 4.37E-08 6.03E-11 

18.2 1.4 18.78501 0.005916944 0.000153123 4.60E-07 8.54E-10 

18.4 1.6 18.93231 0.012683783 0.000426273 2.92E-06 8.36E-09 

 

Table 5.4 represents the absolute errors obtained against exact Copper future 

prices with                         ̃        using ADM and VIM 

for various iterations 

    

Exact 

solution 

Absolute error for 

n=4 

Absolute 

error for 

n=7 

Absolute 

error for 

n=10 

Absolute 

error for 

n=15 

110 0 110 4.26E-14 4.26E-14 4.26E-14 4.26E-14 

115 0.2 118.7028 2.82E-06 3.92E-11 1.42E-14 1.42E-14 
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120 0.4 126.7789 8.24E-05 5.28E-09 2.29E-12 2.84E-14 

125 0.6 134.1946 0.000544 1.39E-08 2.47E-10 5.68E-14 

130 0.8 140.9388 0.001879 1.00E-06 6.34E-09 2.84E-14 

135 1 147.0183 0.004318 1.21E-05 7.30E-08 3.78E-12 

140 1.2 152.4538 0.006994 7.38E-05 4.93E-07 5.80E-11 

145 1.4 157.2757 0.006792 0.000312 2.21E-06 4.76E-10 

150 1.6 161.5214 0.002931 0.001026 6.82E-06 1.83E-09 

155 1.8 165.2324 0.033572 0.002794 1.28E-05 4.12E-09 

160 2 168.4521 0.102224 0.006538 1.50E-06 1.12E-07 

 

Table 5.5 Percentage errors obtained using the equation (5.16)  

       % errors for n=4 % errors for n=10 

 Exact solution in ADM in ADM 

(.1, .1) 0.1266 0.00021254 2.2142e-12 

(.2, .3) 0.31435 0.022777 3.4999e-7 

(.3, .2) 0.38378 0.00081735 2.0814e-9 

(.4, .4) 0.56245 0.030975 8.2698e-6 

(.5, .6) 0.71101 0.38093 0.00052207 

 

Table 5.6 Absolute errors obtained using the equation (5.16) 

    
absolute error for 

n=3 

absolute error for 

n=10 

absolute error for 

n=14 

0.1 0.1 2.69081E-07 2.80331E-15 8.32667E-17 

0.2 0.3 7.15988E-05 1.10017E-09 1.10800E-13 

0.3 0.2 3.13681E-06 7.98800E-12 1.66533E-16 

0.3 0.4 6.62866E-05 1.76082E-08 7.87781E-12 

0.4 0.2 4.91557E-06 2.40791E-11 1.66533E-16 

0.4 0.5 5.49150E-04 5.25154E-07 3.45767E-10 

0.5 0.3 8.85704E-05 2.13180E-09 2.35256E-13 

0.5 0.5 1.10803E-03 5.26954E-07 7.82549E-10 

0.6 0.4 4.94478E-04 2.55110E-08 2.37945E-11 

0.6 0.5 1.45846E-03 2.67268E-07 8.02700E-10 
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0.7 0.1 6.15411E-07 9.99201E-16 1.11022E-16 

0.7 0.4 5.46780E-04 1.13326E-08 1.30052E-11 

0.7 0.5 1.59062E-03 1.50586E-07 4.19500E-10 

0.8 0.5 1.51617E-03 6.25021E-07 2.37647E-10 

0.9 0.5 1.25602E-03 1.07257E-06 1.00793E-09 

1 0.5 8.34698E-04 1.43103E-06 1.74121E-09 

 

Table 5.7 represents the time elapsed in seconds for finding the approximate 

solution of the model with the parameter values used in table 5.1 

Method Elapsed 

time in 

seconds for 

n=4 

Elapsed 

time in 

seconds for 

n=7 

Elapsed 

time in 

seconds for 

n=10 

Elapsed 

time in 

seconds for 

n=15 

Elapsed time 

in seconds 

for n=25 

ADM 2.510444 3.988302 5.639090 7.932666 15.154135 

VIM 2.217024 3.320347 5.346506 8.144588 83.682647 

 

Table 5.8 represents the time elapsed in seconds for finding the approximate 

solution of the model with the parameter values used in table 5.2 

Method Elapsed 

time in 

seconds for 

n=4 

Elapsed 

time in 

seconds for 

n=7 

Elapsed 

time in 

seconds for 

n=10 

Elapsed 

time in 

seconds for 

n=15 

Elapsed time 

in seconds 

for n=25 

ADM 2.926894 4.439972 6.290687 9.814973 17.037331 

VIM 2.363203 4.075299 6.020251 9.834339 122.705986 

 

Table 5.9 represents the time elapsed in seconds for finding the approximate 

solution of the model with the parameter values used in table 5.3 

Method Elapsed 

time in 

seconds for 

n=4 

Elapsed 

time in 

seconds for 

n=7 

Elapsed 

time in 

seconds for 

n=10 

Elapsed 

time in 

seconds for 

n=15 

Elapsed time 

in seconds for 

n=25 
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ADM 2.973792 3.723436 5.571800 8.676009 11.462024 

VIM 2.238381 3.630831 5.255295 8.453601 101.359876 

 

Table 5.10 represents the time elapsed in seconds for finding the approximate 

solution of the model with the parameter values used in table 5.4 

Method Elapsed 

time in 

seconds for 

n=4 

Elapsed 

time in 

seconds for 

n=7 

Elapsed 

time in 

seconds for 

n=10 

Elapsed 

time in 

seconds for 

n=15 

Elapsed time 

in seconds 

for n=25 

ADM 2.636094 3.944166 4.639100 8.956850 13.467820 

VIM 2.152425 3.873026 5.489444 8.209186 101.041525 

 

Table 5.11 represents the possible values of convergence control parameter (  ) 

obtained from the equation (5.17) with                           

 ̃        and various values of      for n=4 

                        

3.55343130662573 + 

0.00000000000000i 

3.09821434862397 + 

0.00000000000000i 

0.965661690096844 + 

2.58775600526590i 

0.932423922138502 + 

2.16472952191210i 

0.965661690096844 - 

2.58775600526590i 

0.932423922138502 - 

2.16472952191210i 

-1.62252970806677 + 

0.00000000000000i 

-1.23449602349703 + 

0.00000000000000i 

                        

2.84607730544686 + 

0.00000000000000i 

2.66785225818887 + 

0.00000000000000i 

0.899903640850532 + 

1.94284476683101i 

0.867949060775257 + 

1.79323605456733i 



Chapter-5                                          One-Factor Commodity Price Model and its Solution 

59 
 

0.899903640850532 - 

1.94284476683101i 

0.867949060775257 - 

1.79323605456733i 

-1.04827910361384 + 

0.00000000000000i 

-0.934995377873612 + 

0.00000000000000i 

                      

2.52726947197325 + 

0.00000000000000i 

2.40932608185694 + 

0.00000000000000i 

0.836448151734802 + 

1.67990640455548i 

0.805317967947988 + 

1.58806654410742i 

0.836448151734802 - 

1.67990640455548i 

0.805317967947988 - 

1.58806654410742i 

-0.858599023710498 + 

0.00000000000000i 

-0.804264052046744 + 

0.00000000000000i 

                        

2.30648319575950 + 

0.00000000000000i 

2.21447419023907 + 

0.00000000000000i 

0.774497446422827 + 

1.51033085744685i 

0.743941777852800 + 

1.44253247301433i 

0.774497446422827 - 

1.51033085744685i 

0.743941777852800 - 

1.44253247301433i 

-0.764597548817974 + 

0.00000000000000i 

-0.735463514269374 + 

0.00000000000000i 

 

Table 5.12 represents the possible values of    convergence control parameter 

obtained for                         ̃        using HAM for n=7 

                        

2.49255111716484 + 

0.803501114442005i 

2.29930919166078 + 

0.759805435262053i 

2.49255111716484 - 2.29930919166078 - 
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0.803501114442005i 0.759805435262053i 

1.34849179913272 + 

1.62879049943596i 

1.27742444968459 + 

1.43238022286521i 

1.34849179913272 - 

1.62879049943596i 

1.27742444968459 - 

1.43238022286521i 

-0.0930615131831449 + 

1.32934673374291i 

-0.00765631384857506 + 

1.18344964557266i 

-0.0930615131831449 - 

1.32934673374291i 

-0.00765631384857506 - 

1.18344964557266i 

-0.730923900666381 + 

0.00000000000000i 

-0.577408845270316 + 

0.00000000000000i 

                        

2.17863569423147 + 

0.743527025865854i 

2.08706425544540 + 

0.736447478910551i 

2.17863569423147 - 

0.743527025865854i 

2.08706425544540 - 

0.736447478910551i 

1.22491066634659 + 

1.31142376303365i 

1.18000299031636 + 

1.22004133341375i 

1.22491066634659 - 

1.31142376303365i 

1.18000299031636 - 

1.22004133341375i 

0.0317681747425665 + 

1.09579309937860i 

0.0540754250400093 + 

1.03016183821819i 

0.0317681747425665 - 

1.09579309937860i 

0.0540754250400093 - 

1.03016183821819i 

-0.499266626030706 + 

0.00000000000000i 

-0.449890178965246 + 

0.00000000000000i 

                      

2.01113011264470 + 

0.733535728504165i 

1.94478672124589 + 

0.732773143225451i 
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2.01113011264470 - 

0.733535728504165i 

1.94478672124589 - 

0.732773143225451i 

1.13937272208555 + 

1.14476788717063i 

1.10159463953277 + 

1.07986920486001i 

1.13937272208555 - 

1.14476788717063i 

1.10159463953277 - 

1.07986920486001i 

0.0676779008115005 + 

0.975939150920224i 

0.0761133585352276 + 

0.928640325434158i 

0.0676779008115005 - 

0.975939150920224i 

0.0761133585352276 - 

0.928640325434158i 

-0.415552424375421 + 

0.00000000000000i 

-0.390404808628700 + 

0.00000000000000i 

                        

1.88480460570394 + 

0.733139780873444i 

1.82929460626767 + 

0.734011684458898i 

1.88480460570394 - 

0.733139780873444i 

1.82929460626767 - 

0.734011684458898i 

1.06594968862019 + 

1.02238887489866i 

1.03203656955333 + 

0.970610672836218i 

1.06594968862019 - 

1.02238887489866i 

1.03203656955333 - 

0.970610672836218i 

0.0811795515767032 + 

0.885991546232223i 

0.0839098520854237 + 

0.846704165095014i 

0.0811795515767032 - 

0.885991546232223i 

0.0839098520854237 - 

0.846704165095014i 

-0.371445390971807 + 

0.00000000000000i 

-0.356947749215963 + 

0.00000000000000i 
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5.7.2 DISCUSSION 

This study has undertaken parameters as were available against pre-executed 

study by Schwartz [111] for crude oil, say, speed adjustment of spot commodity 

prices ( ), drift rate ( ), volatility of spot price of commodity (  ), market price 

of risk ( ̃) and were substituted in the one-factor model, and subsequently, crude 

oil future prices were found.  

Prior to the obtained prices, on substitution of parameters, the obtained 

polynomial (A 1.1.1) and the corresponding coefficients were tested successfully 

for convergence, and thus approximate solution was derived. On comparison with 

exact solutions derived from analytical solutions of the existing study, the 

obtained approximate solution values from both ADM and VIM methods are 

found to be precisely matching.  The obtained errors (tables 5.1 to 5.3) are found 

to be abridged significantly with increased number of iterations.   

On the similar lines, existing study as refereed above, commodity prices for 

copper were subjected to one-factor model, and this study derived approximate 

solutions using ADM and VIM methods (A 1.1.2), and as a matter of successful 

application the obtained values are precisely matching with exact solutions, and 

the errors (tables 5.4 to 5.7) were significantly abridged with increased number of 

iterations.  

Further, the study has been investigated to negotiable time lapse between the 

ADM and VIM methods, for both crude oil and copper prices, the observed delay 

for 10 iterations or n=10, is largely matching with both the methods, but further 

increase in the number of iterations, the delay particularly in case of VIM found 

to be approximately 6 times. Detailed delay specific tables were shown in tables 

5.8 to 5.10. 

The study further evaluated for HAM method on the above refereed study, and 

thus obtained polynomial in terms of three variables, that are,      and    (5.17). 
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When the parameters of the refereed study,   and   were substituted in the above 

polynomial, 8-sets of polynomials were derived (A 1.2.1 to A 1.2.8). However, 

the study observed that the    value happens to be not consistent among all the 

obtained 8-sets of polynomials (table 5.11), an impediment while testing validity 

of HAM.  

5.8 CONCLUSION 

The validation of ADM, VIM, HAM and HPM methods, were undertaken for 

deriving approximate solutions of one-factor commodity price model, in the form 

of polynomials which in turn will be of immense help while efficaciously 

predicting the future commodity prices at any short interval of time more 

accurately and with less degree of error. The obtained errors are to be reduced 

considerably with increased number of iterations. However, computations through 

VIM are of longer duration processing compared to ADM to obtain the 

approximate polynomial. Absence of convergence control parameter    is one of 

the important limitations while solving the one-factor commodity price model 

using HAM and HPM. 
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CHAPTER-6 

TWO FACTOR COMMODITY PRICE MODEL AND ITS 

SOLUTION 

6.1 TWO FACTOR COMMODITY PRICE MODEL 

The Two Factor Commodity Price Model equation is  

  
 

 
                 

  
 

 
              [        ̃]         

                                                                                                                            (6.1)      

with terminal boundary condition                                (6.2) 

The closed form solution of the above equation (6.1) along with (6.2) is given by 

Schwartz [111]. 

             [  
      

 
     ]         (6.3) 

where  
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(      )

  
                                                  (6.4)  

6.2 SOLUTION OF TWO FACTOR COMMODITY PRICE MODEL 

USING ADM 

According to ADM, approximate solution of the equation (6.1) along with (6.2) 

can be written as
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              [
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  for      

6.3 SOLUTION OF TWO FACTOR COMMODITY PRICE MODEL 

USING VIM 

To obtain the approximate solution to equation (6.1) along with (6.2), according 

to VIM, it can be written as follows 
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                  ∫  [
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             (6.8) 

                       ∫                
 

 
         (6.9) 

This yields the stationary conditions 

                        (6.10) 

Substituting the value of        into the functional (6.6) give the iteration 

formulas 
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6.4 CONVERGENCE OF SOLUTION OF TWO FACTOR COMMODITY 

PRICE MODEL  

6.4.1 Convergence of solution of Two Factor Commodity Price Model using 

VIM has been verified as given in the following theorem developed in our 

investigation (Pannala & Vipin [102]) 

Let us consider the functions                                       

                                                          

                  are Lipschitz continuous with 

|            
  |     |    | |            

  |     |    |, 

|            
  |     |    | |            

  |     |    | 

|            
  |     |    | |            

  |     |    |    

and |            
  |     |    | for        and   [   ]      . 

Theorem 6.1: The solution           obtained from (6.11) converges to the 

solution of problem (6.1) when         and          where  

    {|   |    |   |    |   |    |   |    | |    | |       }   

    {          },     
  
 

 
                

  
 

 
  and          ̃  

Proof: From (6.11) 
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     ∫ [
  

  
                                          

 

 

                      ]                                 (6.13) 

Let us consider that,                                     and 

                              

|        
  |      |         |. Since    is a decreasing function with respect 

to      from (6.12), (6.13) and mean value theorem we obtained, 

        ∫ [
      

  
    {              }     {              }  

 

 

   {              }     {              }   {              }  

  {              }  {              }]       

        ∫        
 

 
 {|   |    |   |    |   |    |   |    | |    

| |       } ∫ |  |  
 

 
  

                                 {|   |    |   |    |   |    

|   |    | |    | |       } ∫ |  |  
 

 
  

                                 {|   |    |   |    |   |    

|   |    | |    | |       }   |         |   

            {          } |        
  |  

where       , hence                 |        
  |, therefore,  

 ‖    ‖         |    |            |  |     ‖  ‖ 

Since,         , then ‖  ‖   . 
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6.4.2 Convergence of solution of Two Factor Commodity Price Model using 

ADM 

It was discussed in section 5.4.2 

6.5 NUMERICAL EXAMPLES 

Example 6.1: Consider           ̃                in the 

equation (6.1),  

We obtain the following approximants using ADM 

      

                  

    
     (     )

 
  

    
       (           )

 
  

    
     (                        )

  
         (6.14a) 

Adding all the approximants in (6.14a) we obtain the approximate solution of 

(6.1) for n=4, as 

                       
     (     )

 
 

       (           )

 
 

     (                        )

  
        (6.14b) 

 

Example 6.2: Solved example-6.1 using VIM 

We obtain the following approximant using VIM for n=4 

   

(
   (      )

  
             

   (                           )

  
  

     (            )

  
  

  )     
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6.6 SOLUTION OF TWO FACTOR COMMODITY PRICE MODEL 

USING HAM, AND HPM 

6.6.1 Solution using HAM 

Using a set of parameter values of Crude oil                      

                              ̃      , obtained the following 

polynomial in         with the help of MATLAB for n=4 

                           
                

              

  
                                                 

                  
                  

                    
     

                                            
        

         
               

                  
               

  
                   

                                  

  
                    

                    
                  

  
                                                      

                                                    (6.15) 

where    is called convergence control parameter.  

6.6.2 Solution using HPM 

If      , then HAM will be in the form of HPM.  

 

 

 



Chapter-6                                          Two-Factor Commodity Price Model and its Solution 

 

70 
 

6.7 RESULTS AND DISCUSSION  

6.7.1 RESULTS 

Risk free interest rate is considered as constant           (Schwartz [111]) 

The following tables- 6.1 to 6.3 are prepared for the Crude Oil data with various 

parameter values (Schwartz [111]) using ADM and VIM 

Table 6.1 represents the absolute errors obtained against exact Crude oil future 

prices with                                             

       ̃        for various iterations 

      

Exact 

solution  

Absolute 

error for 

n=4 

Absolute 

error for 

n=10 

Absolute 

error for 

n=15 

19.5 0.1 0 19.5 0 0 0 

19.5 0.25 0 19.5 0 0 0 

19.5 0.4 0 19.5 0 0 0 

20 0.1 0.2 19.85612 0.000328 1.14E-09 3.55E-15 

20 0.25 0.2 19.36559 0.000164 5.41E-10 5.33E-14 

20 0.4 0.2 18.88718 0.000304 3.22E-09 4.26E-14 

20.5 0.1 0.4 20.24592 0.009513 2.10E-06 3.02E-10 

20.5 0.25 0.4 19.40926 0.004335 1.16E-06 3.34E-09 

20.5 0.4 0.4 18.60717 0.009593 6.15E-06 2.42E-09 

21 0.1 0.6 20.67204 0.066091 0.000164 2.31E-07 

21 0.25 0.6 19.58507 0.027542 0.000103 2.07E-06 

21 0.4 0.6 18.55525 0.071336 0.000499 1.41E-06 

21.5 0.1 0.8 21.13021 0.256856 0.003563 2.53E-05 

21.5 0.25 0.8 19.85732 0.098432 0.002464 0.000195013 

21.5 0.4 0.8 18.66112 0.293227 0.011137 0.000126105 

22 0.1 1 21.61451 0.728116 0.038288 0.000952528 
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22 0.25 1 20.19949 0.257768 0.028684 0.006579433 

22 0.4 1 18.8771 0.871394 0.12285 0.004057134 

22.5 0.1 1.2 22.11942 1.693686 0.264487 0.018316996 

22.5 0.25 1.2 20.59228 0.556043 0.211919 0.115977683 

22.5 0.4 1.2 19.17057 2.110494 0.86867 0.06853459 

Table 6.2 represents the absolute errors obtained against exact Crude oil future 

prices with                                             

       ̃        for various iterations 

      

Exact 

solution  

Absolute 

error for 

n=4 

Absolute 

error for 

n=10 

Absolute 

error for 

n=15 

13 0.1 0 13 0 0 0 

13 0.25 0 13 0 0 0 

13 0.4 0 13 0 0 0 

13.5 0.1 0.2 13.39166 0.000244 9.70E-10 5.33E-15 

13.5 0.25 0.2 13.05938 0.000174 1.09E-10 3.02E-14 

13.5 0.4 0.2 12.73535 8.32E-05 1.73E-09 4.62E-14 

14 0.1 0.4 13.78654 0.007234 1.83E-06 3.82E-10 

14 0.25 0.4 13.21219 0.004876 1.08E-07 1.94E-09 

14 0.4 0.4 12.66177 0.002971 3.40E-06 2.87E-09 

14.5 0.1 0.6 14.19261 0.051202 0.000147 2.05E-07 

14.5 0.25 0.6 13.43791 0.032799 1.98E-06 1.23E-06 

14.5 0.4 0.6 12.72334 0.024044 0.000283 1.75E-06 

15 0.1 0.8 14.61093 0.202355 0.003267 1.69E-05 

15 0.25 0.8 13.71847 0.123895 8.54E-05 0.000118586 

15 0.4 0.8 12.88053 0.105232 0.006457 0.000163378 

15.5 0.1 1 15.04001 0.582443 0.035827 0.000496635 

15.5 0.25 1 14.03945 0.342464 0.00218 0.004082092 

15.5 0.4 1 13.10545 0.328434 0.072593 0.005464378 
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16 0.1 1.2 15.47763 1.373928 0.25217 0.007632238 

16 0.25 1.2 14.38978 0.778862 0.023071 0.073262929 

16 0.4 1.2 13.37839 0.827704 0.522122 0.095664048 

Table 6.3 represents the absolute errors obtained against exact Crude oil future 

prices with                                             

       ̃        for various iterations 

      

Exact 

solution  

Absolute 

error for 

n=4 

Absolute 

error for 

n=10 

Absolute 

error for 

n=15 

16.8 0.1 0 16.8 0 0 0 

16.8 0.25 0 16.8 0 0 0 

16.8 0.4 0 16.8 0 0 0 

17 0.1 0.2 16.87743 1.18E-04 1.37E-10 0.00E+00 

17 0.25 0.2 16.44513 5.22E-05 7.08E-11 3.55E-15 

17 0.4 0.2 16.02391 0.00016 4.27E-10 0 

17.2 0.1 0.4 16.9837 0.003455 2.56E-07 3.36E-12 

17.2 0.25 0.4 16.23286 0.001373 1.49E-07 1.50E-10 

17.2 0.4 0.4 15.51521 0.00493 8.14E-07 8.54E-11 

17.4 0.1 0.6 17.12047 0.02413 2.02E-05 3.39E-10 

17.4 0.25 0.6 16.1311 0.008663 1.30E-05 9.30E-08 

17.4 0.4 0.6 15.19891 0.036017 6.58E-05 4.88E-08 

17.6 0.1 0.8 17.28519 0.09407 0.000442 1.10E-07 

17.6 0.25 0.8 16.11417 0.030622 0.000308 8.77E-06 

17.6 0.4 0.8 15.02248 0.145945 0.001463 4.27E-06 

17.8 0.1 1 17.47394 0.267003 0.004768 7.84E-06 

17.8 0.25 1 16.1621 0.07901 0.00356 0.000295266 

17.8 0.4 1 14.94874 0.42842 0.016068 0.000134327 

18 0.1 1.2 17.68265 0.620951 0.033017 0.000201974 

18 0.25 1.2 16.25958 0.167356 0.026139 0.005191716 
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18 0.4 1.2 14.95104 1.026313 0.113049 0.002216134 

18.2 0.1 1.4 17.90766 1.25998 0.16853 0.002906543 

18.2 0.25 1.4 16.39498 0.309708 0.140351 0.058334256 

18.2 0.4 1.4 15.01009 2.13805 0.585456 0.02345857 

18.4 0.1 1.6 18.14588 2.315582 0.68866 0.028141152 

18.4 0.25 1.6 16.55949 0.519543 0.599521 0.47252837 

18.4 0.4 1.6 15.11179 4.022954 2.424333 0.179659438 

Table 6.4 represents the absolute errors obtained against exact Copper future 

prices with                                             

       ̃        for various iterations 

      

Exact 

solution  

Absolute 

error for 

n=4 

Absolute 

error for 

n=10 

Absolute 

error for 

n=15 

110 0.1 0 110 0 0 0 

110 0.25 0 110 0 0 0 

110 0.4 0 110 0 0 0 

115 0.1 0.2 114.1406 0.000214 4.87E-11 0 

115 0.25 0.2 111.124 1.82E-05 7.82E-11 0 

115 0.4 0.2 108.1871 0.000786 1.83E-10 1.42E-14 

120 0.1 0.4 118.3468 0.006579 9.53E-08 7.53E-13 

120 0.25 0.4 112.7958 0.000876 1.60E-07 1.78E-11 

120 0.4 0.4 107.5052 0.024573 3.58E-07 3.16E-11 

125 0.1 0.6 122.6398 0.048142 7.90E-06 6.47E-10 

125 0.25 0.6 114.9323 0.008495 1.38E-05 1.13E-08 

125 0.4 0.6 107.7092 0.182648 2.96E-05 2.07E-08 

130 0.1 0.8 127.027 0.195938 0.00018 7.73E-08 

130 0.25 0.8 117.4609 0.04225 0.000326 1.10E-06 

130 0.4 0.8 108.6151 0.754366 0.000674 2.07E-06 

135 0.1 1 131.5079 0.578772 0.002015 3.14E-06 
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135 0.25 1 120.3193 0.145448 0.003785 3.81E-05 

135 0.4 1 110.0827 2.259281 0.007565 7.33E-05 

140 0.1 1.2 136.0776 1.396819 0.014463 6.42E-05 

140 0.25 1.2 123.4551 0.396649 0.027987 0.000688 

140 0.4 1.2 112.0035 5.523943 0.054327 0.00135 

145 0.1 1.4 140.7293 2.933822 0.076318 0.00082 

145 0.25 1.4 126.824 0.921266 0.151758 0.007922 

145 0.4 1.4 114.2927 11.74509 0.286925 0.015856 

150 0.1 1.6 145.4553 5.56839 0.321667 0.00742 

150 0.25 1.6 130.389 1.903145 0.65578 0.065729 

150 0.4 1.6 116.8832 22.55041 1.210694 0.133812 

155 0.1 1.8 150.2482 9.784734 1.14234 0.051578 

155 0.25 1.8 134.1192 3.596065 2.382844 0.424455 

155 0.4 1.8 119.7215 40.05759 4.305026 0.877632 

Table 6.5 Percentage errors obtained using the equation (6.14b) 

Table 6.6 Percentage errors obtained using the equation (6.14b) 

      Exact 

% error for 4 

iterations 

% error for 10 

iterations 

% error for 15 

iterations 

0.1 0.1 0.1 0.1085146503 2.25525E-04 3.14350E-11 0.00000E+00 

0.1 0.3 0.5 0.1260801838 2.56160E-01 1.33993E-03 8.73688E-06 

0.1 0.4 0.3 0.1148314993 1.50609E-02 5.10891E-06 2.26953E-09 

         % errors for n=4 % errors for 

n=10 

 Exact solution in ADM in ADM 

(.1, .1, .1) 0.10851 0.00022553 3.1435e-11 

(.2, .3, .4) 0.244 0.094825 0.0001258 

(.3, .2, .5) 0.39039 0.35768 0.001324 

(.4, .5, .6) 0.48407 0.013347 0.0051027 

(.5, .4, .2) 0.55253 0.002357 6.6113e-8 
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0.1 0.7 0.5 0.1111070302 2.41625E-01 4.45142E-04 7.74112E-06 

0.2 0.1 0.3 0.2457442266 4.25524E-02 4.68422E-06 2.47756E-09 

0.2 0.3 0.4 0.2439977694 9.48254E-02 1.25804E-04 2.69613E-07 

0.2 0.6 0.5 0.2293495321 1.13887E-01 2.15090E-04 2.49966E-06 

0.2 0.7 0.1 0.2055422474 8.62698E-05 7.56201E-12 0.00000E+00 

0.2 0.7 0.2 0.2103489536 2.70926E-03 1.69320E-08 3.80016E-12 

0.2 0.7 0.3 0.2146341083 2.00488E-02 1.54463E-06 2.38308E-09 

0.2 0.7 0.4 0.2185521975 8.19283E-02 3.76901E-05 2.27652E-07 

0.2 0.7 0.5 0.2222140603 2.41625E-01 4.45142E-04 7.74112E-06 

0.3 0.2 0.1 0.3226067264 1.87715E-04 3.92493E-11 0.00000E+00 

0.3 0.4 0.2 0.3315189381 2.35700E-03 6.61128E-08 3.90147E-12 

0.4 0.6 0.5 0.4586990642 1.13887E-01 2.15090E-04 2.49966E-06 

0.5 0.4 0.3 0.5741574966 1.50609E-02 5.10891E-06 2.26953E-09 

0.5 0.5 0.5 0.5917853240 1.57035E-02 7.65528E-04 2.53550E-06 

0.6 0.5 0.4 0.6927743054 9.48283E-03 7.37756E-05 8.37084E-08 

0.7 0.6 0.4 0.7862866311 3.65460E-02 2.31700E-05 6.86220E-08 

0.7 0.9 0.5 0.7301077059 4.59439E-01 1.75147E-03 1.42179E-05 

0.7 1 0.5 0.7073927568 5.29681E-01 2.17183E-03 1.30498E-05 

0.8 0.6 0.3 0.8781246341 8.32252E-03 1.22433E-06 6.58036E-10 

0.8 1 0.2 0.8007991794 6.55754E-03 1.08881E-07 7.02902E-12 

0.9 0.8 0.5 0.9688526359 3.59847E-01 1.13510E-03 1.20606E-05 

1 0.3 0.5 1.2608018383 2.56160E-01 1.33993E-03 8.73688E-06 

1 0.7 0.4 1.0927609876 8.19283E-02 3.76901E-05 2.27652E-07 

1 1 0.5 1.0105610812 5.29681E-01 2.17183E-03 1.30498E-05 

Table 6.7 represents the time elapsed in seconds for finding the solution of Two 

Factor model with the parameter values used in table 6.1 

Method Elapsed time 

in seconds for 

n=4 

Elapsed time in 

seconds for 

n=10 

Elapsed time in 

seconds for 

n=15 

Elapsed time in 

seconds for n=25 

ADM 1.982743 3.852880 6.545958 11.591868 

VIM 1.553360 3.900412 6.441140 28.909459 
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Table 6.8 represents the time elapsed in seconds for finding the solution of Two 

Factor model with the parameter values used in table 6.2 

Method Elapsed time 

in seconds for 

n=4 

Elapsed time in 

seconds for 

n=10 

Elapsed time in 

seconds for 

n=15 

Elapsed time in 

seconds for n=25 

ADM 1.994683 3.685885 6.651909 12.028979 

VIM 1.486266 3.328135 6.485965 45.797084 

Table 6.9 represents the time elapsed in seconds for finding the solution of Two 

Factor model with the parameter values used in table 6.3 

Method Elapsed time 

in seconds for 

n=4 

Elapsed time in 

seconds for 

n=10 

Elapsed time in 

seconds for 

n=15 

Elapsed time in 

seconds for n=25 

ADM 2.005927 2.690094 6.817965 11.798120 

VIM 1.472098 3.557801 5.842722 43.434506 

Table 6.10 represents the time elapsed in seconds for finding the solution of Two 

Factor model with the parameter values used in table 6.4 

Method Elapsed time 

in seconds for 

n=4 

Elapsed time in 

seconds for 

n=10 

Elapsed time in 

seconds for 

n=15 

Elapsed time in 

seconds for n=25 

ADM 2.007766 3.963014 6.477581 11.570737 

VIM 1.493533 3.451490 5.960028 45.370510 

Table 6.11 represents the possible values of convergence control parameter (  ) 

obtained for                                             

       ̃        using HAM for n=4 

                                    

15.4971763699993 + 

0.00000000000000i 

7.74858818499964 + 

0.00000000000000i 
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-9.12228036274570 + 

0.00000000000000i 

-4.56114018137285 + 

0.00000000000000i 

2.73116035551266 + 

7.96201323605130i 

1.36558017775633 + 

3.98100661802565i 

2.73116035551266 - 

7.96201323605130i 

1.36558017775633 - 

3.98100661802565i 

                                    

5.16572545666643 + 

0.00000000000000i 

3.87429409249982 + 

0.00000000000000i 

-3.04076012091523 + 

0.00000000000000i 

-2.28057009068643 + 

0.00000000000000i 

0.910386785170886 + 

2.65400441201710i 

0.682790088878165 + 

1.99050330901283i 

0.910386785170886 - 

2.65400441201710i 

0.682790088878165 - 

1.99050330901283i 

                                  

3.09943527399986 + 

0.00000000000000i 

2.58286272833321 + 

0.00000000000000i 

-1.82445607254914 + 

0.00000000000000i 

-1.52038006045762 + 

0.00000000000000i 

0.546232071102532 + 

1.59240264721026i 

0.455193392585444 + 

1.32700220600855i 

0.546232071102532 - 

1.59240264721026i 

0.455193392585444 - 

1.32700220600855i 

                                    

2.21388233857133 + 

0.00000000000000i 

1.93714704624991 + 

0.00000000000000i 

-1.30318290896367 + 

0.00000000000000i 

-1.14028504534321 + 

0.00000000000000i 
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0.390165765073237 + 

1.13743046229304i 

0.341395044439083 + 

0.995251654506413i 

0.390165765073237 - 

1.13743046229304i 

0.341395044439083 - 

0.995251654506413i 

                                    

330.401423735203 + 

0.00000000000000i 

165.200711867602 + 

0.00000000000000i 

14.3787946370860 + 

0.00000000000000i 

7.18939731854297 + 

0.00000000000000i 

1.11878151904653 + 

5.18843070902909i 

0.559390759523271 + 

2.59421535451455i 

1.11878151904653 - 

5.18843070902909i 

0.559390759523271 - 

2.59421535451455i 

                                    

110.133807911734 + 

0.00000000000000i 

82.6003559338006 + 

0.00000000000000i 

4.79293154569532 + 

0.00000000000000i 

3.59469865927149 + 

0.00000000000000i 

0.372927173015514 + 

1.72947690300970i 

0.279695379761635 + 

1.29710767725727i 

0.372927173015514 - 

1.72947690300970i 

0.279695379761635 - 

1.29710767725727i 

                                  

66.0802847470406 + 

0.00000000000000i 

55.0669039558673 + 

0.00000000000000i 

2.87575892741719 + 

0.00000000000000i 

2.39646577284766 + 

0.00000000000000i 

0.223756303809308 + 

1.03768614180582i 

0.186463586507756 + 

0.864738451504848i 
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0.223756303809308 - 

1.03768614180582i 

0.186463586507756 - 

0.864738451504848i 

                                    

47.2002033907433 + 

0.00000000000000i 

41.3001779669004 + 

0.00000000000000i 

2.05411351958371 + 

0.00000000000000i 

1.79734932963574 + 

0.00000000000000i 

0.159825931292362 + 

0.741204387004156i 

0.139847689880817 + 

0.648553838628637i 

0.159825931292362 - 

0.741204387004156i 

0.139847689880817 - 

0.648553838628637i 

 

6.7.2 DISCUSSION 

This study has undertaken parameters as were available against pre-executed 

study by Schwartz [111] for crude oil and copper, say, speed adjustment of spot 

commodity prices ( ), volatility of spot price of commodity (  ), volatility of 

convenience yield (   , risk free interest rate ( ), log run mean price of the 

convenience yield ( ), market price of risk ( ̃), correlation between spot price and 

convenience yield of a commodity (  ) and were substituted in the two-factor 

model, and subsequently, crude oil and copper future prices were found.  

Prior to the obtained prices, on substitution of parameters, the achieved 

polynomial (A 2.1.1) and the corresponding coefficients were tested successfully 

for convergence (A 2.3.1 & A 2.3.2), and thus approximate solution was derived. 

On comparison with exact solutions derived from analytical solution of the 

existing study, the obtained approximate solution values from both ADM and 

VIM methods are found to be accurately identical.  The obtained errors (tables 6.1 

to 6.3) are found to be reduced significantly with increased number of iterations.   
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On the similar lines, present study as refereed above, commodity prices for copper 

were subjected to two-factor model, and this study resultant approximate solution 

(A 2.1.2) using ADM and VIM methods, and as a matter of successful application 

the obtained values are precisely matching with exact solutions, and the errors 

(tables 6.4 to 6.6), were significantly reduced with increased number of iterations.  

Further, the study has been examined to accessible time lapse between the ADM 

and VIM methods, for both crude oil and copper prices. The observed delay for 

10 iterations or n=10, is largely similar with both the methods, but further 

increase in the number of iterations, the delay mostly in case of VIM found to be 

approximately 6 times. Detailed delay specific tables were shown in tables 6.7 to 

6.10. 

The study further estimated for HAM method on the above refereed study, and 

thus obtained polynomial in terms of four variables, that are,      , and    (6.15). 

When the parameters of the refereed study,      and   were substituted in the 

above polynomial, 8-sets of polynomials were derived (A 2.2.1 to A 2.2.8). 

However, the study observed that the    value happens to be not constant among 

all the obtained 8-sets of polynomials (table 6.11), an impediment while testing 

validity of HAM.  

 6.8 CONCLUSION 

The validation of ADM, VIM, HAM and HPM methods, were carry out for 

originating approximate solutions of two-factor commodity price model, in the 

form of polynomials which in turn will be of enormous help while efficaciously 

calculating the future commodity prices at any short interval of time more 

accurately and with less degree of error. The obtained errors are to be reduced 

significantly with increased number of iterations. However, computations through 

VIM are of extensive duration compared to ADM to obtain the approximate 

polynomial. Lack of convergence control parameter    is one of the significant 
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limitations while solving the two-factor commodity price model using HAM and 

HPM.   
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CHAPTER-7 

THREE FACTOR COMMODITY PRICE MODEL AND ITS 

SOLUTION 

7.1 THREE FACTOR COMMODITY PRICE MODEL 

The Three Factor Commodity Price Model is 

  
 

 
      

  
 

 
    

  
 

 
                                    

            ̂                                       (7.1) 

with the terminal boundary condition                                (7.2) 

The closed form solution of the equation (7.1) along with (7.2) found to be  
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7.2 SOLUTION OF THREE FACTOR COMMODITY PRICE MODEL 

USING ADM 

According to ADM, approximate solution of the three factor commodity price 

model equation can be written as

                [
  
 

 
      

  
 

 
    

  
 

 
               

                                 ̂                ]       (7.5) 

      

     ∫      
 

 
  for      

7.3 SOLUTION OF THREE FACTOR COMMODITY PRICE MODEL 

USING VIM 

The approximate solution of the Three Factor model equation, using VIM, can be 

written as follows 
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                         ∫                  
 

 
                  (7.9) 

This yields stationary conditions 

                                                      (7.10) 

Substituting the value of        into the functional (7.6) give the iteration 

formulas 

     

            ∫ [
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]                                 (7.11) 

7.4 CONVERGENCE OF SOLUTION OF THREE FACTOR 

COMMODITY PRICE MODEL  

7.4.1 Convergence of solution of Three Factor Commodity Price Model using 

VIM has been verified as given in the following theorem developed in our 

investigation. (Pannala & et al. [103]) 

Equation (7.1), can be re-written as  

       
                                                

                                      (7.12) 

where     
  
 

 
     

  
 

 
     

  
 

 
                                      

      ̂                       

Let us consider the functions,                               

                                                     

                       are Lipschitz continuous with 
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 |            
  |     |    | for        , and    [   ]          (7.13) 

where            and                            (7.14)                                                                                                                                              

Theorem 7.1: The solution             obtained from (7.11) converges to the 

solution of problem (7.1) when         and          where  

    ∑ |   |    
  
    and      [          ]              

Proof: Consider,  
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Let us consider       ∫ [
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Let                                        

|          
  |      |           |. Since    is a decreasing function with 

respect to ‘t’ then from mean value theorem and (7.15)-(7.16), we obtained, 
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              [    {     }]|          
  |  where       

Hence,                  |          
  |, therefore,  

 ‖    ‖         |    |            |  |     ‖  ‖ 

Since,         , then ‖  ‖    

7.4.2 Convergence of solution of Three Factor Commodity Price Model using 

ADM 

It was discussed in section 5.4.2 

7.5 NUMERICAL EXAMPLES 

Example 7.1: Consider                         and 

    ̃      in the equation (7.1),  

We obtain the following approximants using ADM for n=3 

      

                 

      (
           

 
  

         

 
  

          

 
)  

     
     (                                                             )

 
   (7.17a) 

Adding all the approximants in (7.17a) we obtain the approximate solution of 

(7.1) for n=3, as 

                            (
           

 
  

         

 
  

          

 
)  

     (                                                             )

 
     (7.17b) 

Example 7.2: Solved the example-7.1 using VIM 

We obtain the following approximant for three iterations using VIM  
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(             
   (                         )

  
 

               (                           )
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7.6 SOLUTION OF THREE FACTOR COMMODITY PRICE MODEL 

USING HAM, AND HPM 

7.6.1 Solution using HAM:  

Using a set of parameter values of Crude oil                      

                                                    

       ̃                         obtained the following polynomial in 

           with the help of MATLAB for n=4, 
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where    is called convergence control parameter.  

7.6.2 Solution using HPM 

If      , then HAM will be in the form of HPM.  

7.7 RESULTS AND DISCUSSION 

7.7.1 RESULTS 

The risk-adjusted drift of the process:  

         
  
 

          (
       

        
)          for Crude Oil (Schwartz, 1997 

page no: 949) 

        
  
 

    
      (

       

        
)           for Copper (Schwartz, 1997 

page no: 949) 

where      is called infinite maturity discount yield be 7 percent 
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The following tables 7.1 to 7.5 have prepared using ADM and VIM  

Table 7.1 represents the absolute errors obtained against exact Crude oil future 

prices with                                                

                               ̃                         for 

various iterations 

        
Exact 

solution  

Absolute 

error for 

n=4 

Absolute 

error for 

n=10 

Absolute error 

for n=15 

19.5 0.1 0.03 0 19.5 0 0 0 

19.5 0.25 0.03 0 19.5 0 0 0 

19.5 0.4 0.03 0 19.5 0 0 0 

19.5 0.1 0.06 0 19.5 0 0 0 

19.5 0.1 0.09 0 19.5 0 0 0 

19.5 0.25 0.09 0 19.5 0 0 0 

19.5 0.25 0.06 0 19.5 0 0 0 

19.5 0.4 0.06 0 19.5 0 0 0 

19.5 0.4 0.09 0 19.5 0 0 0 

20 0.1 0.03 0.2 19.7426 8.63E-05 5.12E-11 3.55E-15 

20 0.25 0.03 0.2 19.2286 2.16E-05 4.60E-11 0 

20 0.4 0.03 0.2 18.728 0.00018 1.92E-10 3.55E-15 

20 0.1 0.06 0.2 19.8591 8.28E-05 4.95E-11 7.11E-15 

20 0.1 0.09 0.2 19.9762 7.92E-05 4.77E-11 0 

20 0.25 0.09 0.2 19.4561 2.77E-05 3.38E-11 3.55E-15 

20 0.25 0.06 0.2 19.342 2.49E-05 3.96E-11 3.55E-15 

20 0.4 0.06 0.2 18.8384 0.00016 1.80E-10 3.55E-15 

20 0.4 0.09 0.2 18.9496 0.00015 1.68E-10 3.55E-15 

20.5 0.1 0.03 0.4 20.021 0.00257 9.71E-08 7.64E-13 

20.5 0.25 0.03 0.4 19.1082 0.00052 9.47E-08 3.79E-11 

20.5 0.4 0.03 0.4 18.237 0.00549 3.70E-07 2.42E-12 

20.5 0.1 0.06 0.4 20.2533 0.00247 9.41E-08 2.56E-13 

20.5 0.1 0.09 0.4 20.4882 0.00237 9.09E-08 1.14E-12 

20.5 0.25 0.09 0.4 19.554 0.00073 7.04E-08 3.27E-11 

20.5 0.25 0.06 0.4 19.3298 0.00063 8.20E-08 3.52E-11 

20.5 0.4 0.06 0.4 18.4485 0.005 3.47E-07 4.75E-12 

20.5 0.4 0.09 0.4 18.6625 0.00454 3.25E-07 6.74E-12 

21 0.1 0.03 0.6 20.337 0.0183 7.83E-06 8.65E-10 
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21 0.25 0.03 0.6 19.1094 0.00295 8.17E-06 2.38E-08 

21 0.4 0.03 0.6 17.9559 0.04032 3.03E-05 4.97E-10 

21 0.1 0.06 0.6 20.6849 0.01761 7.60E-06 1.99E-10 

21 0.1 0.09 0.6 21.0388 0.01692 7.36E-06 3.80E-10 

21 0.25 0.09 0.6 19.7688 0.00452 6.14E-06 2.05E-08 

21 0.25 0.06 0.6 19.4363 0.00379 7.11E-06 2.21E-08 

21 0.4 0.06 0.6 18.263 0.03678 2.85E-05 2.04E-09 

21 0.4 0.09 0.6 18.5754 0.03348 2.67E-05 3.35E-09 

21.5 0.1 0.03 0.8 20.6888 0.07252 0.00017 1.15E-07 

21.5 0.25 0.03 0.8 19.2082 0.00898 0.00019 2.27E-06 

21.5 0.4 0.03 0.8 17.8336 0.16458 0.00068 3.76E-08 

21.5 0.1 0.06 0.8 21.1528 0.06991 0.00017 4.93E-08 

21.5 0.1 0.09 0.8 21.6272 0.06728 0.00016 8.25E-09 

21.5 0.25 0.09 0.8 20.0794 0.01567 0.00015 1.97E-06 

21.5 0.25 0.06 0.8 19.639 0.01254 0.00017 2.12E-06 

21.5 0.4 0.06 0.8 18.2335 0.15028 0.00064 1.16E-07 

21.5 0.4 0.09 0.8 18.6424 0.13695 0.0006 2.48E-07 

22 0.1 0.03 1 21.0731 0.20908 0.0019 4.92E-06 

22 0.25 0.03 1 19.3854 0.0189 0.00222 7.76E-05 

22 0.4 0.03 1 17.8329 0.48705 0.0076 3.84E-06 

22 0.1 0.06 1 21.654 0.20184 0.00185 2.60E-06 

22 0.1 0.09 1 22.2508 0.1945 0.0018 5.70E-07 

22 0.25 0.09 1 20.4688 0.03935 0.00169 6.72E-05 

22 0.25 0.06 1 19.9198 0.02977 0.00194 7.23E-05 

22 0.4 0.06 1 18.3244 0.44515 0.00715 1.59E-06 

22 0.4 0.09 1 18.8295 0.40608 0.00671 6.26E-06 

22.5 0.1 0.03 1.2 21.4863 0.49342 0.01335 0.0001 

22.5 0.25 0.03 1.2 19.6259 0.02971 0.0163 0.00138 

22.5 0.4 0.03 1.2 17.9265 1.17686 0.05412 0.00011 

22.5 0.1 0.06 1.2 22.1851 0.47691 0.01303 6.09E-05 

22.5 0.1 0.09 1.2 22.9067 0.46013 0.01268 2.37E-05 

22.5 0.25 0.09 1.2 20.9232 0.08047 0.01248 0.0012 

22.5 0.25 0.06 1.2 20.2642 0.05665 0.0143 0.00129 

22.5 0.4 0.06 1.2 18.5096 1.0765 0.05092 9.29E-06 

22.5 0.4 0.09 1.2 19.1116 0.98286 0.04784 7.67E-05 

23 0.1 0.03 1.4 21.9249 1.01513 0.06903 0.00134 

23 0.4 0.03 1.4 18.0941 2.47352 0.28354 0.00165 

23 0.1 0.06 1.4 22.7429 0.98226 0.0675 0.00084 
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23 0.1 0.09 1.4 23.5915 0.94873 0.06577 0.00041 

23 0.25 0.09 1.4 21.4316 0.14238 0.06751 0.01366 

23 0.25 0.06 1.4 20.6607 0.09108 0.07719 0.01467 

23 0.4 0.06 1.4 18.7692 2.26418 0.26688 0.00049 

23 0.4 0.09 1.4 19.4695 2.06877 0.25087 0.00052 

23.5 0.1 0.03 1.6 22.3857 1.89013 0.2856 0.01213 

23.5 0.4 0.03 1.6 18.3201 4.69614 1.18723 0.01657 

23.5 0.1 0.06 1.6 23.3244 1.83076 0.27967 0.008 

23.5 0.1 0.09 1.6 24.3024 1.77 0.27284 0.00437 

23.5 0.4 0.06 1.6 19.0884 4.30136 1.11798 0.00681 

23.5 0.4 0.09 1.6 19.8888 3.93266 1.05142 0.00165 

Table 7.2 represents the absolute errors obtained against exact Copper future 

prices with                                                

                                               ̃        for 

various iterations 

        
Exact 

Solution 

 Absolute 

Error for 

n=4 

 Absolute 

Error for 

n=10 

 Absolute 

Error for 

n=15 

110 0.1 0.03 0 110 0 0 0 

110 0.1 0.06 0 110 0 0 0 

110 0.1 0.09 0 110 0 0 0 

110 0.25 0.03 0 110 0 0 0 

110 0.25 0.06 0 110 0 0 0 

110 0.25 0.09 0 110 0 0 0 

110 0.4 0.03 0 110 0 0 0 

110 0.4 0.06 0 110 0 0 0 

110 0.4 0.09 0 110 0 0 0 

115 0.1 0.03 0.2 113.487 0.00014 1.79E-11 0 

115 0.1 0.06 0.2 114.156 0.00014 1.74E-11 1.42E-14 

115 0.1 0.09 0.2 114.83 0.00013 1.68E-11 1.42E-14 

115 0.25 0.03 0.2 110.456 6.85E-05 4.27E-11 0 

115 0.25 0.06 0.2 111.107 5.08E-05 3.76E-11 1.42E-14 

115 0.25 0.09 0.2 111.763 3.53E-05 3.30E-11 1.42E-14 

115 0.4 0.03 0.2 107.506 0.00073 5.80E-11 1.42E-14 

115 0.4 0.06 0.2 108.14 0.00066 5.74E-11 1.42E-14 
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115 0.4 0.09 0.2 108.778 0.0006 5.63E-11 2.84E-14 

120 0.1 0.03 0.4 117.047 0.00442 3.50E-08 5.54E-13 

120 0.1 0.06 0.4 118.405 0.00422 3.41E-08 3.41E-13 

120 0.1 0.09 0.4 119.778 0.00401 3.30E-08 1.71E-13 

120 0.25 0.03 0.4 111.445 0.00235 8.69E-08 4.38E-12 

120 0.25 0.06 0.4 112.738 0.00179 7.66E-08 4.14E-12 

120 0.25 0.09 0.4 114.046 0.00129 6.73E-08 3.88E-12 

120 0.4 0.03 0.4 106.112 0.02287 1.12E-07 1.42E-11 

120 0.4 0.06 0.4 107.343 0.02081 1.11E-07 1.25E-11 

120 0.4 0.09 0.4 108.588 0.0189 1.09E-07 1.10E-11 

125 0.1 0.03 0.6 120.698 0.03244 2.90E-06 4.11E-10 

125 0.1 0.06 0.6 122.762 0.031 2.84E-06 2.72E-10 

125 0.1 0.09 0.6 124.862 0.02953 2.75E-06 1.53E-10 

125 0.25 0.03 0.6 112.891 0.01887 7.47E-06 2.79E-09 

125 0.25 0.06 0.6 114.823 0.01456 6.60E-06 2.64E-09 

125 0.25 0.09 0.6 116.787 0.01075 5.81E-06 2.48E-09 

125 0.4 0.03 0.6 105.59 0.16997 9.11E-06 9.27E-09 

125 0.4 0.06 0.6 107.396 0.15473 9.09E-06 8.16E-09 

125 0.4 0.09 0.6 109.233 0.14066 8.99E-06 7.15E-09 

130 0.1 0.03 0.8 124.446 0.13226 6.60E-05 4.39E-08 

130 0.1 0.06 0.8 127.237 0.12664 6.47E-05 2.99E-08 

130 0.1 0.09 0.8 130.091 0.12084 6.30E-05 1.80E-08 

130 0.25 0.03 0.8 114.726 0.083 0.00018 2.70E-07 

130 0.25 0.06 0.8 117.299 0.06484 0.00016 2.56E-07 

130 0.25 0.09 0.8 119.93 0.04879 0.00014 2.41E-07 

130 0.4 0.03 0.8 105.766 0.70205 0.0002 9.18E-07 

130 0.4 0.06 0.8 108.138 0.63951 0.0002 8.08E-07 

130 0.4 0.09 0.8 110.563 0.58168 0.0002 7.09E-07 

135 0.1 0.03 1 128.294 0.39124 0.00074 1.65E-06 

135 0.1 0.06 1 131.83 0.37527 0.00073 1.15E-06 

135 0.1 0.09 1 135.464 0.35868 0.00071 7.23E-07 

135 0.25 0.03 1 116.894 0.26212 0.00203 9.34E-06 

135 0.25 0.06 1 120.116 0.20684 0.0018 8.87E-06 

135 0.25 0.09 1 123.427 0.15787 0.00159 8.37E-06 

135 0.4 0.03 1 106.507 2.10301 0.00227 3.24E-05 

135 0.4 0.06 1 109.442 1.91664 0.00228 2.85E-05 

135 0.4 0.09 1 112.459 1.74426 0.00227 2.51E-05 

140 0.1 0.03 1.2 132.238 0.94543 0.00531 3.19E-05 
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140 0.1 0.06 1.2 136.539 0.90827 0.00523 2.27E-05 

140 0.1 0.09 1.2 140.98 0.86945 0.00512 1.47E-05 

140 0.25 0.03 1.2 119.346 0.67067 0.01498 0.00017 

140 0.25 0.06 1.2 123.227 0.53351 0.01328 0.00016 

140 0.25 0.09 1.2 127.235 0.41181 0.01173 0.00015 

140 0.4 0.03 1.2 107.71 5.14317 0.01607 0.00059 

140 0.4 0.06 1.2 111.213 4.68956 0.01622 0.00052 

140 0.4 0.09 1.2 114.83 4.26977 0.01619 0.00046 

145 0.1 0.03 1.4 136.274 1.98788 0.02798 0.00039 

145 0.1 0.06 1.4 141.359 1.91255 0.02765 0.00028 

145 0.1 0.09 1.4 146.633 1.83338 0.02709 0.00019 

145 0.25 0.03 1.4 122.042 1.48316 0.0811 0.00194 

145 0.25 0.06 1.4 126.595 1.18775 0.07197 0.00184 

145 0.25 0.09 1.4 131.319 0.92525 0.06364 0.00174 

145 0.4 0.03 1.4 109.296 10.9387 0.08389 0.00695 

145 0.4 0.06 1.4 113.374 9.97806 0.08497 0.00613 

145 0.4 0.09 1.4 117.604 9.08862 0.08502 0.00539 

150 0.1 0.03 1.6 140.397 3.77644 0.11781 0.00342 

150 0.1 0.06 1.6 146.284 3.63823 0.11671 0.00249 

150 0.1 0.09 1.6 152.418 3.49215 0.11457 0.0017 

150 0.25 0.03 1.6 124.948 2.94714 0.34994 0.01604 

150 0.25 0.06 1.6 130.188 2.37349 0.31082 0.01528 

150 0.25 0.09 1.6 135.647 1.86307 0.27508 0.01448 

150 0.4 0.03 1.6 111.199 21.0087 0.34996 0.05842 

150 0.4 0.06 1.6 115.862 19.1708 0.35565 0.05158 

150 0.4 0.09 1.6 120.721 17.4684 0.3568 0.04542 

155 0.1 0.03 1.8 144.601 6.641 0.41788 0.02317 

155 0.1 0.06 1.8 151.309 6.40592 0.41491 0.01706 

155 0.1 0.09 1.8 158.329 6.15607 0.40807 0.0118 

155 0.25 0.03 1.8 128.037 5.3961 1.27002 0.10343 

155 0.25 0.06 1.8 133.977 4.36676 1.12887 0.09864 

155 0.25 0.09 1.8 140.192 3.44977 0.99987 0.09356 

155 0.4 0.03 1.8 113.37 37.3307 1.23082 0.38203 

155 0.4 0.06 1.8 118.629 34.0763 1.25481 0.33751 

155 0.4 0.09 1.8 124.133 31.0608 1.26214 0.29733 

160 0.1 0.03 2 148.881 10.9906 1.2952 0.12809 

160 0.1 0.06 2 156.428 10.6137 1.28869 0.09511 

160 0.1 0.09 2 164.359 10.211 1.2697 0.06669 



Chapter-7                                        Three-Factor Commodity Price Model and its Solution 

 

94 
 

160 0.25 0.03 2 131.284 9.26208 4.02127 0.54735 

160 0.25 0.06 2 137.939 7.52659 3.57677 0.52252 

160 0.25 0.09 2 144.932 5.97884 3.1703 0.49611 

160 0.4 0.03 2 115.766 62.3955 3.78456 2.04843 

160 0.4 0.06 2 121.635 56.9734 3.87014 1.81069 

160 0.4 0.09 2 127.801 51.9475 3.90233 1.59596 

Table 7.3 Percentage errors obtained using the equation (7.17b) 

           % errors for n=3 % errors for n=10 

 Exact Solution in ADM in ADM 

(.1, .1, .1, .1) 0.099609 0.0029328 4.1017e-11 

(.2, .3, .4, .5) 0.20001 1.2862 0.0007352 

(.3, .2, .3, .4) 0.29929 0.56596 0.00010083 

(.4, .5, .2, .3) 0.36525 0.27658 2.8212e-6 

(.4, .4, .5, .7) 0.40429 4.36 0.014367 

Table 7.4 Percentage errors obtained using the equation (7.17b) 

        

Exact 

solution 

% error for            

n=3 

% error 

for            

n=5 

% error for          

n=7  

0.1 0.1 0.1 0.2 0.09866 0.04773 0.00137 2.01E-05 

0.1 0.1 0.5 0.1 0.10348 4.10E-05 2.01E-05 0.000 

0.1 0.2 0.3 0.3 0.10028 0.17804 0.01234 0.0004 

0.1 0.2 0.6 0.4 0.11012 0.12036 0.06420 0.00015 

0.1 0.3 0.3 0.4 0.09706 0.6741 0.04318 0.00476 

0.1 0.3 0.6 0.2 0.1046 0.01422 0.00098 0.000 

0.1 0.5 0.2 0.1 0.09699 0.00360 0.000 0.000 

0.1 0.5 0.3 0.4 0.09187 0.76673 0.00603 0.00402 

0.1 0.8 0.1 0.3 0.08316 0.09682 0.01642 0.00065 

0.2 0.1 0.6 0.3 0.2218 0.02213 0.01313 0.00024 

0.2 0.2 0.5 0.4 0.2132 0.26099 0.06712 0.00105 
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0.2 0.3 0.3 0.3 0.19608 0.21557 0.00831 0.00044 

0.2 0.5 0.3 0.1 0.19584 0.00327 0.000 0.000 

0.2 0.5 0.6 0.4 0.2025 0.45443 0.02485 0.00267 

0.2 0.7 0.2 0.4 0.16821 0.62777 0.06713 0.00117 

0.4 0.2 0.5 0.4 0.42628 0.26099 0.06712 0.00106 

0.5 0.2 0.6 0.4 0.55071 0.12023 0.06432 0.00011 

0.5 0.4 0.3 0.2 0.48681 0.04821 0.00031 2.10E-05 

0.6 0.2 0.1 0.3 0.57130 0.28239 0.0095 0.00079 

0.7 0.5 0.3 0.2 0.6707 0.0506 4.01E-05 2.01E-05 

0.7 0.8 0.3 0.2 0.63789 0.03188 0.00101 1.00E-05 

0.8 0.3 0.5 0.4 0.82940 0.39079 0.0533 0.00249 

1 0.2 0.3 0.4 0.9977 0.56581 0.0649 0.00391 

1 0.8 0.6 0.4 0.93371 0.47388 0.0279 0.00021 

Table 7.5 represents the time elapsed in seconds for finding the solution of Three 

Factor model with the parameter values used in table 7.1 

Method Elapsed time 

in seconds for 

n=4 

Elapsed time 

in seconds for 

n=10 

Elapsed time 

in seconds for 

n=15 

Elapsed time in 

seconds for n=25 

ADM 2.220892 6.308238 35.613235 1373.568140 

VIM 1.853144 6.246374 79.699470 > 1.5 hour  

Table 7.6 represents the possible values of    (convergence control parameter) 

obtained from (7.18) with                                      

                                       ̃                 

        and for various values of         

                                              

-2.91051662177178 + 

1.95202089283503i 

-2.55436347895358 + 

1.57412780682948i 

-2.91051662177178 - -2.55436347895358 - 
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1.95202089283503i 1.57412780682948i 

1.00932725604556 + 

1.95216454138055i 

0.668084284726043 + 

1.57710895107762i 

1.00932725604556 - 

1.95216454138055i 

0.668084284726043 - 

1.57710895107762i 

                                                

-2.43637862726395 + 

1.35947648510095i 

-2.46828086849421 + 

1.16600585160155i 

-2.43637862726395 - 

1.35947648510095i 

-2.46828086849421 - 

1.16600585160155i 

0.489740515113065 + 

1.37797646087807i 

0.368928028285936 + 

1.24369098793811i 

0.489740515113065 - 

1.37797646087807i 

0.368928028285936 - 

1.24369098793811i 

                                              

-2.67653908927327 + 

0.831812460292432i 

-4.17872063860209 + 

0.00000000000000i 

-2.67653908927327 - 

0.831812460292432i 

-2.23894244189587 + 

0.00000000000000i 

0.276628511433550 + 

1.14093283674904i 

0.201913389250992 + 

1.05508107653545i 

0.276628511433550 - 

1.14093283674904i 

0.201913389250992 - 

1.05508107653545i 

                                                

-7.49729674362432 + 

0.00000000000000i 

-24.1328970110900 + 

0.00000000000000i 

-1.83212518344587 + 

0.00000000000000i 

-1.60463896150629 + 

0.00000000000000i 

0.140434984267648 + 0.0904128074792712 + 
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0.978903652225325i 0.909145295348406i 

0.140434984267648 - 

0.978903652225325i 

0.0904128074792712 - 

0.909145295348406i 

                                              

-2.29142051514755 + 

1.39532452709706i 

-1.90560663718182 + 

1.07558448480444i 

-2.29142051514755 - 

1.39532452709706i 

-1.90560663718182 - 

1.07558448480444i 

0.507783051146976 + 

1.39514959724646i 

0.272867192244906 + 

1.07461420997982i 

0.507783051146976 - 

1.39514959724646i 

0.272867192244906 - 

1.07461420997982i 

                                                

-1.68343482136240 + 

0.899634757899800i 

-1.52980794146682 + 

0.780424918810946i 

-1.68343482136240 - 

0.899634757899800i 

-1.52980794146682 - 

0.780424918810946i 

0.164943493874010 + 

0.897537416427583i 

0.102470615178616 + 

0.777329967168531i 

0.164943493874010 - 

0.897537416427583i 

0.102470615178616 - 

0.777329967168531i 

                                              

-1.41427308295932 + 

0.691582922620829i 

-1.32289335302662 + 

0.621482560022472i 

-1.41427308295932 - 

0.691582922620829i 

-1.32289335302662 - 

0.621482560022472i 

0.0623280119330451 + 

0.687939520704833i 

0.0349514499635184 + 

0.617910290217611i 

0.0623280119330451 - 0.0349514499635184 - 
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0.687939520704833i 0.617910290217611i 

                                                

-1.24808424893323 + 

0.563965800518490i 

-1.18526285090381 + 

0.515390644769821i 

-1.24808424893323 - 

0.563965800518490i 

-1.18526285090381 - 

0.515390644769821i 

0.0155583958843659 + 

0.561150355052783i 

0.00146276615930262 + 

0.514020243887365i 

0.0155583958843659 - 

0.561150355052783i 

0.00146276615930262 - 

0.514020243887365i 

                                              

-2.33130227313091 + 

1.44015191429721i 

-1.93307813427265 + 

1.10733259291355i 

-2.33130227313091 - 

1.44015191429721i 

-1.93307813427265 - 

1.10733259291355i 

0.559516980513505 + 

1.43988618489090i 

0.313851258254845 + 

1.10588324365860i 

0.559516980513505 - 

1.43988618489090i 

0.313851258254845 - 

1.10588324365860i 

                                                

-1.70654972266153 + 

0.925132390767941i 

-1.55133740615974 + 

0.802313482177420i 

-1.70654972266153 - 

0.925132390767941i 

-1.55133740615974 - 

0.802313482177420i 

0.200173872827161 + 

0.921981848914586i 

0.133786969805682 + 

0.797541708814776i 

0.200173872827161 - 

0.921981848914586i 

0.133786969805682 - 

0.797541708814776i 
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-1.43537554457298 + 

0.711162753497807i 

-1.34409457281070 + 

0.639466584996773i 

-1.43537554457298 - 

0.711162753497807i 

-1.34409457281070 - 

0.639466584996773i 

0.0906895242352878 + 

0.705247803187147i 

0.0609521024802013 + 

0.633095649154331i 

0.0906895242352878 - 

0.705247803187147i 

0.0609521024802013 - 

0.633095649154331i 

                                                

-1.26962878989814 + 

0.580768389451764i 

-1.20726040974519 + 

0.531260159418163i 

-1.26962878989814 - 

0.580768389451764i 

-1.20726040974519 - 

0.531260159418163i 

0.0396052627992929 + 

0.574711820712472i 

0.0238536655695816 + 

0.526296617605541i 

0.0396052627992929 - 

0.574711820712472i 

0.0238536655695816 - 

0.526296617605541i 

 

7.7.2 DISCUSSION 

This study has undertaken parameters as were available against pre-executed 

study by Schwartz [111] for crude oil and copper, say, speed adjustment of spot 

commodity prices ( ), volatility of spot price of commodity (  ), volatility of 

convenience yield (   , volatility of risk free interest (  ), log run mean price of 

the convenience yield ( ), market price of risk ( ̃), correlation between spot price 

and convenience yield of a commodity (  ), correlation between convenience 

yield and risk free interest rate (  ), correlation between risk free interest rate and 

spot price of commodity (  ), speed adjustment of interest rate ( ), risk adjusted 
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mean short rate of interest rate (  ) and were substituted in the three-factor 

model, and subsequently, crude oil and copper future prices were found.  

Previous to the obtained prices, on substitution of parameters, the achieved 

polynomial (A 3.1.1) and the corresponding coefficients were tested successfully 

for convergence (A 3.3.1 & A 3.3.2), and thus approximate solution was derived. 

On comparison with exact solutions derived from analytical solution of the 

existing study, the obtained approximate solution values from both ADM and 

VIM methods are found to be exactly same.  The attained errors (table 7.1) are 

found to be reduced considerably with increased number of iterations.   

On the similar lines, present study as refereed above, commodity prices for copper 

were subjected to three-factor model, and this study resultant approximate 

solution (A 3.1.2) using ADM and VIM methods, and as a matter of successful 

application the achieved values are precisely matching with exact solutions, and 

the errors (tables 7.2 to 7.4), were significantly reduced with increased number of 

iterations.  

Further, the study has been inspected to accessible time gap between the ADM 

and VIM methods, for both crude oil and copper prices. The observed delay for 

10 iterations or n=10, is mostly similar with both the methods, but further increase 

in the number of iterations, the delay mostly in case of VIM found to be about 6 

times. Detailed delay specific tables were shown in tables 7.5. 

The study further estimated for HAM method on the above refereed study, and 

thus obtained polynomial in terms of five variables, that are,        , and 

   (7.18). When the parameters of the refereed study,        and   were 

substituted in the above polynomial, 8-sets of polynomials were derived (A 3.2.1 

to A 3.2.8). However, the study observed that the    value happens to be not 

common among all the obtained 8-sets of polynomials (table 7.6), an impediment 

while testing validity of HAM.  
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7.8 CONCLUSION 

The validation of ADM, VIM, HAM and HPM methods, were undertaken for 

deriving approximate solutions of three-factor commodity price model, in the 

form of polynomials which in turn will be of immense help while efficaciously 

predicting the future commodity prices at any short interval of time more 

accurately and with less degree of error. The obtained errors are to be reduced 

considerably with increased number of iterations. However, computations through 

VIM are of longer duration processing compared to ADM to obtain the 

approximate polynomial. Absence of convergence control parameter    is one of 

the important limitations while solving the three-factor commodity price model 

using HPM and HAM.   
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CHAPTER 8 

CONCLUSIONS  

The study is a part of cross validation using ADM, VIM and HAM methods onto 

the existing linear PDE models, selected from commodity market and validation 

of analytical methods including, FIM, Tanh-Coth, and Sine-Cosine methods on 

the non-linear PDE model selected from securities market.   

The validation methods, largely non-discretization methods were undertaken for 

deriving approximate solutions of one-factor, two-factor and three-factor 

commodity price models, in the form of polynomials which in turn will be of 

immense help while efficaciously predicting the future commodity prices at any 

short interval of time (which happens to be a serious drawback with discretization 

method), more accurately and with less degree of error. However, time consumed 

during validation process varies with respect to the methods undertaken.  

For examining non-linear Black-Scholes model, selected from securities market, 

analytical methods that include, FIM, Tanh-Coth, and Sine-Cosine methods were 

utilized for validation purpose of the available literature. The said methods could 

not be as successful when compared to non-discretization methods largely due to 

non-availability of first integral polynomials,   and  . 
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CHAPTER 9 

FUTURE SCOPE OF RESEARCH 

Future research is possible with the collection of larger group of Black-Scholes 

equations, segregated based upon commodity and security future prices and their 

meticulous examination for inherent parameter variations.  Extension of the study 

onto weather-based commodity and security price fluctuations, political, military, 

economic or policy-based forecasts should be of immense utility while 

safeguarding interests of the trading business houses and retail investors.  

Validation of PDE models may also be subjected against Indian commodities, like 

Potato, Jaggery and in understanding fluctuations of INR against foreign 

currencies.  

Greater scrutiny of PDE models will extend opportunities for Indian researchers 

to promote relevance and importance of PDE as it has been popular and 

successful in international research.  

 

 

.  
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APPENDIX 

 

A-1 ONE FACTOR COMMODITY PRICE MODEL  

A 1.1  The following solutions obtained using ADM and VIM 

A 1.1.1 considering a set of parameter values                        

 ̃            for crude oil  

                                                            

                                                        

                                                        

                                                                

                                                

                                                             

                                        

                                                                

        

                                                              

                                                         

                                                             

                                                       

 A 1.1.2 considering a set of parameter values                        

 ̃            for copper 
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A 1.2 The following eight sets of polynomials in terms of convergence control 

parameter     are obtained by considering a set of parameter values        

                 ̃        using HAM for n=4 

 

A 1.2.1 polynomial for      and       

    

                                                 

                                                          

                                                            

                                

                                              

                                                              

                                                     

                                                      

                                         

                                                    

A 1.2.2 polynomial for        and       
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A 1.2.3 polynomial for      and       

                                                       

                         

                                                  

                                             

                                

                                               

                                                        

       

                                                       

                                                         

                                           

                                                      

A 1.2.4 polynomial for        and       
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A 1.2.5 polynomial for      and       

    

                                              

                                                          

                                                         

                                

                                              

                                                              

                                                     

                                                 

                                        

                                                   

A 1.2.6 polynomial for        and       
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A 1.2.7 polynomial for      and       

                                                      

                                                             

                                                          

                                

                                               

                                                        

                                                             

                                                         

                                           

                                                     

A 1.2.8 polynomial for        and       
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A 1.3 Convergence values   
 
 from the section 5.4.2  

A 1.3.1 considering a set of parameter values                         ̃  

                                             for crude oil 

n=4 n=7 n=10 

0.41221 0.41221 0.41221 

0.174077 0.174077 0.174077 

0.146277 0.146277 0.146277 

  0.291929 0.291929 

  0.130748 0.130748 

  0.261371 0.261371 

    0.13979 

    0.21451 

    0.156742 

 

A 1.3.2 considering a set of parameter values                         ̃  

                                         for crude oil 

n=4 n=7 n=10 

0.890364 0.890364 0.890364 

0.36839 0.36839 0.36839 

0.369359 0.369359 0.369359 

  0.604354 0.604354 

  0.312121 0.312121 

  0.556886 0.556886 

    0.331587 

    0.453809 

    0.373594 
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A-2 TWO FACTOR COMMODITY PRICE MODEL 

A 2.1 The following solutions obtained using ADM and VIM 

A 2.1.1 considering a set of parameter values                      

                              ̃            for crude oil 

                                                         

                                                 

                                                 

                                              

                                             

                                                  

                                                       

                                                           

                                                       

                                                       

                                             

A 2.1.2 considering a set of parameter values                      

                              ̃            for copper 
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A 2.2 The following eight sets of polynomials in terms of convergence control 

parameter    are obtained by considering the set of parameter values 

                                                   ̃  

      using HAM for n=4 

 

A 2.2.1 polynomial for                  

                                                         

                                               

                                                            

A 2.2.2 polynomial for                    

     

                                                      

                                               

                                                           

       

A 2.2.3 polynomial for                  
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A 2.2.4 polynomial for                    

                                                         

                                            

                                                           

       

A 2.2.5 polynomial for                  

                                                        

                                              

                                                             

A 2.2.6 polynomial for                    

    

                                                       

                                                 

                                                          

       

A 2.2.7 polynomial for                  
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A 2.2.8 polynomial for                    

                                                        

                                           

                                                           

       

 

A 2.3 Convergence values     from the section 5.4.2  

A 2.3.1 considering a set of parameter values                    

      ̃                                        for crude oil 

n=4 n=7 n=10 

0.993304 0.993304 0.993304 

0.996712 0.996712 0.996712 

0.992021 0.992021 0.992021 

  0.905004 0.905004 

  0.867625 0.867625 

  0.842512 0.842512 

    0.812944 

    0.790463 

    0.774609 

 

A 2.3.2 considering a set of parameter values                    

      ̃                                        for copper 

n=4 n=7 n=10 

0.720052 0.720052 0.720052 

0.8194 0.8194 0.8194 

0.738257 0.738257 0.738257 

  0.69069 0.69069 

  0.659599 0.659599 

  0.627669 0.627669 

    0.602973 

    0.58253 

    0.564354 
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A-3 THREE FACTOR COMMODITY PRICE MODEL 

A 3.1 The following solutions obtained using ADM and VIM 

A 3.1.1 considering a set of parameter values                      

                                                    

       ̃                            for crude oil 
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A 3.1.2 considering a set of parameter values                     

                                                  

       ̃                             for copper 

                                                       

                                                   

                                                         

                                                           

                            

                                                  

                                                          

                                                         

                                                  

                                                         

                                              

                                                       

                                                            

                                                           

                                                    

                                                          

                                                             

                                                   

A 3.2 The following eight sets of polynomials in terms of convergence control 

parameter    are obtained by considering the set of parameter values 
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                               ̃                         

using HAM for n=4 

 

A 3.2.1 polynomial for                  

    

                                 

                                        

                              

                                                            

                                                 

A 3.2.2 polynomial for                    

    

                                  

                                         

                               

                                    

                                                         

                       

A 3.2.3 polynomial for                  
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A 3.2.4 polynomial for                    

    

                                 

                                       

                              

                                   

                                                         

                        

A 3.2.5 polynomial for                  

    

                                 

                                      

                              

                                                           

                                                  

A 3.2.6 polynomial for                    
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A 3.2.7 polynomial for                  

    

                                    

                                         

                                

                                    

                                                           

                      

A 2.2.8 polynomial for                    

    

                                 

                                      

                              

                                                            

                                                      

A 3.3 Convergence values     from the section 5.4.2  

A 3.3.1 considering a set of parameter values                      

                                                    

       ̃                                   for crude oil 

n=4 n=7 n=10 

0.985682 0.985682 0.985682 

0.917339 0.917339 0.917339 

0.876781 0.876781 0.876781 
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  0.823456 0.823456 

  0.774714 0.774714 

  0.735843 0.735843 

    0.703755 

    0.676473 

    0.653333 

 

A 3.3.2 considering a set of parameter values                     

                                                  

       ̃                                    for copper 

n=4 n=7 n=10 

0.944451 0.944451 0.944451 

0.837053 0.837053 0.837053 

0.793577 0.793577 0.793577 

  0.739345 0.739345 

  0.692874 0.692874 

  0.65535 0.65535 

    0.624263 

    0.598043 

    0.5757 
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