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EXECUTIVE SUMMARY 

History matching of hydrocarbon reservoirs essentially requires the development 

of accurate reservoir models that represent the actual reservoirs. Building a reliable 

numerical reservoir model incorporating all the geological, geophysical, 

geochemical and petrophysical data of the reservoir available through the 

petroleum exploration process is not an easy task, owing to it being highly non-

linear and heterogeneous. Once a geological model of a reservoir is developed with 

spatial distribution of rock properties (like porosity and permeability), a flow model 

needs to be developed which can estimate the multi-phase flows of oil, water and 

gas through the flow channels into the well. Here, dynamic rock and fluid properties 

such as relative permeabilities, fluid saturations, etc., become important in addition 

to the initial and boundary conditions of the reservoir. There are several commercial 

numerical simulators, viz., CMG® (CMG Ltd., Calgary, Canada), ECLIPSE 

(Schlumberger LTD), JewelSuiteTM (Baker Hughes, Houston, Texas), etc., which 

can forecast the rates of production of oil, gas and water along with bottom hole 

flowing pressure in each well, provided all the required inputs are available. 

However, the static rock properties such as permeability and porosity are only 

available at well locations (exploratory or production wells) and there is no 

reasonable way to find how these vary between the wells and in the rest of the 

reservoir.  

Genetic Algorithm (GA) is an evolutionary algorithm based on Darwin’s principle 

of ‘survival of the fittest’ and inspired from genetics. NSGA-II, a variant of Genetic 

Algorithm, is applied to the problem of history matching in this study, for 

estimating the permeability distribution in the reservoir. Initially, the technique is 

applied to a synthetic reservoir and is validated. It is then applied to a real reservoir 

problem to find multiple distinct history matches and the accurate reservoir model 

is chosen for predicting the performance of the reservoir in the future. The larger 

number of variables were reduced using the pilot point method, and Sequential 

Gaussian Simulation (SGSIM, a geostatistical non-linear interpolation technique) 
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was applied to estimate the neighboring variables. The reduced number of variables 

are optimized using NSGA-II. The combined application of SGSIM and NSGA-II 

for solving the problem of history matching has not been explored before. The study 

successfully establishes the application of NSGA-II as one of the promising 

optimization techniques for history matching which yields better reservoir models 

which can be used for performance prediction and production optimization.  
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW AND MOTIVATION  

Petroleum, often referred to as the ‘black gold’, is a natural energy source from the 

subsurface. Since decades, more than half of the energy supplies to the world are 

from petroleum and this is likely to continue since the contribution of renewable 

energy to the global needs is not expanding rapidly enough. Huge investments in 

terms of money, time and technology are made by oil and gas industries for efficient 

exploration and exploitation of petroleum reserves.  

Hydrocarbon reservoirs have oil, gas and water entrapped in core and it needs to 

drill exploratory wells, as shown in Fig. 1.1, to get the core samples and estimate 

the oil reserves. Production wells are later drilled to start the production subjected 

to economic exploitability of the reserve.  

 

Figure 1.1: Schematic of a Hydrocarbon reservoir 

After drilling, workover is any operation done, or within, or through the wellbore 

after the initial completion. During lifetime of every well, several workovers may 

be required to fulfil the very purpose of well satisfactorily. However, proper 

drilling, cementing and completion practices minimizes the need of workover. 
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Well completion is the process of making a well ready for production after drilling 

operations. Artificial lift generally describes various technologies used to increase 

the flow of liquids within a production well. When the natural drive energy of the 

reservoir is not strong enough to push the oil to the surface, artificial lift is employed 

to recover more production. Hydraulic pumping systems, electrical submersible 

pumps, rod pumps, subsurface pumping, gas lift are some of the artificial lift 

technologies.  

Recovery of hydrocarbons from hydrocarbon reservoir commonly occurs in several 

recovery stages viz. primary recovery, secondary recovery and tertiary recoveries 

(Enhanced oil recovery). Primary recovery is the recovery of hydrocarbons from 

the reservoir using the natural energy of the reservoir as a drive. Solution-gas drive, 

gas-cap drive, natural water drive, reservoir compaction and gravity drainage come 

under primary recovery. Secondary recovery results from the augmentation of 

natural energy through injection of water or gas to displace oil toward producing 

wells. Tertiary recovery or enhanced oil recovery is an oil recovery enhancement 

method using sophisticated techniques that alter the original properties of oil. This 

include chemical flooding (alkali, polymer flooding), thermal recovery (steam 

flooding), miscible displacement (CO2 injection). 

Reservoir modeling, simulation and production forecasting play a key role in field 

development effectively and consequently in management and strategies under 

various operating and maintenance scenarios. Production from a reservoir cannot 

be estimated accurately in terms of production from each well, cumulative 

production and the duration of production. This defines how a development of 

reservoir should be done. Though no information is available initially about the 

production, wells are drilled and production is started. Only after more than 5 years 

of production, production data or history of production will be available. This 

enables to create a better model of the reservoir. More the history of production, 

better the model. In general, simulation aims to construct a consistent numerical 

model that resembles the real physics happening inside a system. Reservoir flow 
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simulation aims at building a model that characterize the flow of fluids in the actual 

reservoir in terms of its geological, petrophysical, and geochemical properties. 

Owing to the heterogeneity of a reservoir, it is indeed a difficult task building a 

consistent geological reservoir model that replicates all the geological realism 

available through the petroleum exploration process. In addition, the geological and 

petrophysical data obtained from the production and exploration wells represent 

only a minute area, when compared to the total volume of reservoir. Moreover, 

spatial variation of these rock properties (porosity and permeability) is highly 

unpredictable and it is not a quite easy task to obtain accurate estimates of these 

[1]. The most challenging part is that how these spatial properties are distributed in 

the vast volume of the reservoir is clueless.  

Despite these challenges, reservoir engineers always attempt to construct models 

that approximate geological practicality and reproduce historical field observations 

when simulated. It is vivid that a reliable reservoir model assures confidence in 

production forecast and can be used to understand the reservoir‘s behavior for 

present and to predict the future, under various operating scenarios such as 

workover, well completion and artificial lift strategies etc., as described above. 

Exhaustive understanding of reservoir behavior is necessary for efficient and 

optimal future field development plans such as optimizing the surface facilities, 

well locations and recovery strategies (primary, secondary and tertiary).  Hence, for 

effectively predicting the performance of a reservoir, a geological model with well-

established rock and fluid properties needs to be developed. However, one wonders 

is it possible to predict oil production without going through an elaborate exercise 

of modeling and simulation which is expensive and time consuming. Artificial 

intelligence which is making a paradigm shift in almost all spheres of human 

activity, and more specifically, Genetic Algorithm (GA) appear to be promising 

tools for such an attempt.  

The numerical reservoir models consist of highly nonlinear partial differential 

equations (PDEs) with both time and space as independent variables. The solution 



4 
 

of these equations require initial and boundary conditions which are generally 

complex in petroleum reservoirs. These PDEs describe the hydrodynamic fluid 

flow within the reservoir system along with mass transfer process, which is 

expressed as a function of fluid properties (viscosities, PVT properties, etc.), 

spatially varying rock properties (permeability and porosity) and rock-fluid 

interaction properties (fluid saturations, connate water saturation, relative 

permeabilities, etc.). Several commercial numerical simulators available divide the 

entire reservoir into several thousands of three dimensional grid blocks and 

numerically integrate the flow equations to find the solution.    However, most of 

these properties, particularly the rock properties are not available except at well 

locations. Though a few correlations are available for estimating relative 

permeabilities, there is no way to estimate rock properties between wells and rest 

of the reservoir as they vary unpredictably in space [2]. Hence, reservoir simulation 

cannot be used directly to find the field production profile in absence of requite 

information.  

History matching is one technique to salvage this scenario where one targets to find 

all the missing information such that when used with the numerical simulator, the 

output will match with the field observations which are typically production of oil, 

gas and bottom hole flowing pressure. It is really essential because the development 

of field, number of wells required and their location, expectation and duration of 

these wells depend on how effective history matching is done. Secondary recovery 

also may be attempted depending on how efficient the reservoir model generated 

is, by matching history accurately. Initially, manual trial and error procedures are 

attempted to adjust these parameters and then verify if the predictions match with 

field observations. This is extremely tedious and time consuming and was the only 

way to find the critical properties such as porosity and permeability [3]. The 

reservoirs being highly heterogeneous, these properties were assigned grid-block-

wise and adjusted until a satisfactory match was obtained. History matching a 

complex reservoir with large number of wells used to consume months of human 

time, if done manually. It is obvious that two individuals attempting to history 
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match, claiming equally good match, can come with very different permeability 

maps for the same reservoir. Hence, history matching is an ill-defined problem and 

does not have a unique solution although modeling and simulation do provide a 

unique solution. The inverse problem, as history matching is usually referred to, 

can have infinitely many valid solutions [2].  

All history-matching techniques proposed in the literature are based on the inverse 

modelling problem. Although the main aim of history-matching is minimization of 

the square of data mismatch, the methods that are used for minimization as well as 

for evaluating uncertainty vary broadly. After manual history-matching, 

evolutionary algorithms were developed to automate the history-matching. The 

automated approach is iterative and links optimization techniques to statistical 

analysis and obtains the suitable best parameter combination that results in good 

reservoir history matching. These algorithms are population-based optimization 

algorithms, mimicking processes happening in biological evolution. The 

optimization algorithm for minimizing the objective function for history-matching 

can be broadly divided into two categories, viz., gradient and non-gradient methods. 

Though the application of these techniques could solve the purpose of history 

matching which helps in characterizing the reservoir and evaluating uncertainties, 

each of them have their own limitations and are specific to certain case studies. 

Hence, an attempt is made to test the usage and efficacy of Non-dominated Sorting 

Genetic Algorithm – II (NSGA-II, a variant of Genetic Algorithm (GA) used for 

solving multi-objective problems) for history matching that achieves better 

convergence with minimum computational time. 

GA is an optimization technique which is based on Darwin’s ‘survival of the 

fittest’. It is a computer-based search procedure inspired from genetics, which has 

widespread application. This process utilizes an initial population of 

individuals/solutions, known as chromosomes, which are further processed where 

they undergo inheritance, crossover and mutation for several generations to obtain 

potential solutions. The new generation chromosomes are evaluated based on a 
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fitness function. This process continues until the algorithm converges to the 

potential solutions to the problem. The fitness function represents the individual 

chromosome fitness and is expressed by the objective function [4]. The best 

member of this ‘final’ population is taken to represent the optimal solution. 

Although GA finds only near-optimal solutions, for all practical purposes these are 

accepted as optimal. NSGA-II is one of the variants of genetic algorithm, which is 

exclusively used for minimization problems with more than one objective 

functions. 

1.2 RESEARCH OBJECTIVES 

 To develop a computer program, for history matching, that connects a 

commercial reservoir simulator with the NSGA-II MATLAB® code, which is 

capable of forecasting oil production based on available field observations for 

a single well and cumulative production from all the wells and perform history 

matching by comparing the predicted production with actual field production. 

 To validate the above-developed history matching methodology and code 

using a synthetic 2D hydrocarbon reservoir with a known permeability 

distribution map.  

 To match the production history of a real reservoir using the above-developed 

procedure. 

 To reduce the number of iterated variables, which may help in reducing 

computational time, using pilot point method along with Sequential Gaussian 

Simulation (SGSIM) for non-linear interpolation to estimate the value of 

unknowns at original genetic algorithm points and compare the results.  

1.3 RESEARCH METHODOLOGY 

 Literature Survey:  

An extensive literature survey on various optimization techniques that assist in 

automated history matching is carried out. After a thorough study of the 

advantages and limitations of these techniques, an attempt is made to check the 

usage and efficacy of NSGA-II, which has not been attempted earlier. 
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 Developing a mathematical model:  

A black oil model is generally used for modeling a petroleum reservoir, where 

each phase (oil, gas and water) is treated as a single component. In the black oil 

model, oil and water are considered to be immiscible while gas may exist as 

solution gas or free gas. The black oil model relies on the assumption that the 

reservoir fluids are in thermodynamic equilibrium through the reservoir and 

maintain constant reservoir temperature. A mathematical model has been 

developed for 2-D multiphase black oil model flow of fluids using the 

conservation of mass equation in conjunction with Darcy’s velocity, fluid 

potentials and saturations of phases. 

 Software tools and techniques:  

Multiple realizations of permeability models that are conditioned enough to 

available measurements from the wells are generated by algorithms presented 

in the geostatistical MATLAB® toolbox, ‘mGstat’. In the current research, 

GSLIB’s (Geostatistical Software LIBrary, Stanford Center for Reservoir 

Forecasting, Stanford University, USA) VISIM and SGeMS’ (Stanford 

Geostatistical Modeling Software) SGSIM (Sequential Gaussian Simulation) 

packages are applied using the ‘mGstat’ interface. For flow modelling, a CMG 

simulator (CMG®-IMEXTM) is used to get the production rates of oil, water and 

gas. The code for multi-objective optimization available in MATLAB®, is 

modified suiting to the need of history matching. 

 Research Execution steps 

 A mathematical model for production of hydrocarbons from a hydrocarbon 

reservoir is developed for the black oil model.  

 Approximate distribution map of variables like porosity and permeability 

for the reservoir are generated using the geostatistical MATLAB® toolbox.  

 The porosity and permeability data are fed to the CMG® IMEXTM simulator 

that gives oil, gas and water production for the reservoir. For a given period 

of time, whose production data is available, the deviation between simulated 
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production data and actual production data is minimized with the 

application of NSGA-II.  

 Initially, the methodology is tested for a 2D synthetic black oil reservoir and 

is validated against known data. 

 After validation, the methodology is applied to a real 3D black oil reservoir. 

1.4 THESIS OUTLINE 

Chapter-1 provides the importance of reservoir production forecasting and history 

matching problem towards efficient and optimal field development. A brief 

introduction is provided to the adapted methodology used for automating the 

history matching process and production forecasting. 

Chapter-2 offers extensive literature review on various optimization techniques 

and their application to production forecasting and history matching of a reservoir.  

Chapter-3 discusses the numerical reservoir modeling and simulation approach 

used to compute the hydrodynamic fluid flow in the black-oil reservoir.  

Chapter-4 discusses the details of genetic algorithm (GA) and its variant (NSGA-

II) technique used as optimization tools to solve the history matching problem. This 

chapter also presents the application and validation of the NSGA-II technique for 

2D synthetic reservoir history matching.  

Chapter-5 provides the application of NSGA-II and NSGA-II coupled with the 

SGSIM techniques towards a 3D real reservoir history matching. This chapter also 

discusses the potential of the developed technique in predicting reservoir 

performance in the future.   

Chapter-6 comprises the conclusions and recommendations for future work in the 

area of history matching with genetic algorithm. 
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CHAPTER 2 

LITERATURE REVIEW 

Reservoir modelling and forecasting production are crucial inputs to the efficient 

management of petroleum. Developing reliable numerical reservoir models which 

integrate all the geological, geochemical, geophysical, and petrophysical data of the 

reservoir available through the petroleum exploration process, can help alleviate 

this problem. As these reservoirs are extremely heterogeneous as well as nonlinear 

in nature, obtaining accurate to estimate of these spatially distributions of reservoirs’ ’ 

properties to that identifies these reservoir is quite difficult which influence 

corresponding production profiles. Petroleum engineers always pursue to construct 

reservoir models which are able to produce consistent production forecasts so that 

further reservoir development in terms of recovery strategies (primary, secondary 

and tertiary) to be employed, locating new wells and surface facilities, etc., can be 

optimally designed. Wells occupy a minute percentage of the total area of the 

reservoir and this do not give us any clue about the reservoir properties at all. 

Hence, the available reservoir models cannot be directly used. To overcome this 

difficulty, petroleum engineers usually define an inverse problem, where one quests 

for a few parameters that can be fed as inputs to the reservoir simulator and will 

yield the same production history as actually recorded in the field. The input 

parameters with uncertainties are several, namely, rock properties – porosity, 

permeability and thickness; rock fluid interaction properties – saturations, relative 

permeabilities, depth of oil/water and oil/gas interfaces; laboratory measured data 

– fluid PVT behavior, compressibility, capillary pressure data, viscosities and 

formation volume factors; water influx if aquifers, etc. Out of these, the most 

sensitive and most uncertain parameters are the porosity and permeability. 

Moreover, it is neither desirable nor necessary to include all other variables in 
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optimization. Barring porosity and permeability, the rest can be tweaked manually.  

This is a very tedious exercise and the solution will never be unique since a large 

number of distributions can be found which will result in similar production 

histories. This process is called history-matching and was traditionally carried out 

manually and is a very sluggish process.  

Although some reservoir engineers still use manual history-matching, more often, 

optimization-based automated history-matching has gained in popularity. All 

history-matching techniques proposed in the literature are based on the inverse 

modelling problem [5]. Although the main aim of history-matching is minimization 

of the square of data mismatch, the methods that are used for minimization as well 

as for evaluating uncertainty vary broadly. After manual history-matching, 

evolutionary algorithms were developed to automate the history-matching. The 

automated approach is iterative and links optimization techniques to statistical 

analysis and obtains the suitable best parameter combination that results in good 

reservoir history matching [6]. These algorithms are population-based optimization 

algorithms, mimicking processes happening in biological evolution. The 

optimization algorithm for minimizing the objective function for history-matching 

can be broadly divided into two categories, viz., gradient and non-gradient methods. 

2.1 GRADIENT BASED METHODS  

These methods make use of the conventional optimization approach which has been 

taken up from optimal control theory to calculate solutions which will be closer to 

the local optimum [7]. These methods will initially calculate the gradients of the 

objective functions, and then, find in which direction the optimization search should 

go on, in order to solve the problem [8]. In the framework of the history-matching 

algorithm, the gradients of the production responses with respect to changes in 

reservoir parameters are forwarded to evaluate the magnitude and direction of the 

changes to be made to the parameters [9]. Various optimization algorithms that are 

reported ([10], [11]) in the literature are the steepest descent method, gradual 

deformation approach, the Levenberg-Marquardt method, the Gauss-Newton 
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method, the singular value decomposition method, the Limited-Memory Broyden, 

Conjugate Gradient technique, the Fletcher-Goldfarb-Shanno and the Quasi-

Newton methods. 

These gradient methods require the first derivative (Jacobian) of the objective 

function or the second derivative (Jacobian and Hessian) of the static properties of 

the reservoir. They also demand an estimate of the sensitivity coefficient, which is 

the partial derivative of certain dynamic parameters like pressure and saturation 

with respect to static ones like permeability, azimuth of geospatial variogram and 

porosity [12]. The normal attainment is through the finite difference approximation 

for the partial derivative. 

Kruger introduced the automation of history matching where he proposed the 

procedure for determining a real permeability distribution of 2-dimensional 

reservoir in cycling or flooding projects. He then compared the results obtained 

where he calculated pressure distributions with the field measurements and 

concluded the reservoir model to be trained for production data for trustworthy 

prediction of reservoir performance [13]. Two researchers, Jacquard and Jains 

(1965), proposed a technique of evaluating sensitivity coefficients to solve history 

matching problems. Here, the modified steepest descent method was used for 

lowering the deviation between the simulated and measured pressure arrived at with 

certain changes in a few parameters for a 2-dimensional transient flow, single-phase 

reservoir model. The reservoir model was described analogous with electrical 

parameters like resistance, inductance and capacitance to permeability, production 

rates and porosity of the reservoir model, respectively. The authors reported a 

successful implementation of the history-matching problem though restricted to the 

zonation of permeability [14]. 

Jacquard and Jain’s (1965) description of a nonlinear regression approach was used 

by Jahns to match the reservoir pressure that was obtained by interference test. The 

properties like transmissibility and storage term of each reservoir zone are varied 

with the help of regression analysis. This method was non-suitable for multiphase 



12 
 

flow with change in fluid saturation but with single phase flow, it could easily be 

applicable [15]. Coats et al. introduced a method that is a union of linear 

programming and least squares, which could help assessing a linear relationship of 

error with the reservoir properties. The methodology of zonation was used as a 

method of parameterization with lower and upper boundary constraints on reservoir 

parameters like permeability and porosity. The reservoir description was developed 

with random generation of a number of runs with the help of the reservoir simulator 

and within the given constraints. It was used on three 2-dimensional reservoirs (one 

reservoir with single phase gas, another reservoir with single phase oil and the third 

with two phase flows) [16]. Although the method provided satisfactory matching, 

the validity of assumptions remained doubtful, thus limiting the application of these 

methodologies. 

Slater and Durrer (1971) applied linear programming and a gradient-based method 

as a search technique to attain a finest history-matched model [17]. The 

modification of the gradient method of Jacquard and Jain helped find the step size 

and search direction for modifying the sensitivity coefficient that minimizes the 

objective function. It was reported that finding the step size by gradient methods in 

less porous and permeable regions was difficult because of the strong non-linear 

relationship of the objective function with lower values of the permeability and 

their highly sensitive nature. Thomas et al. (1972) applied a classical Gauss-

Newton method that automatically varies the reservoir parameters that fetches a 

better history matched reservoir model. The method used implementation of Box-

type constraints on reservoir parameters. The authors reported that their method not 

only gave equivalent history match on fewer simulation runs in comparison with 

the work of previous researchers, but also can handle non-linear cases better [3].  

Carter et al. (1974) and Hirasaki (1975) proposed a sensitivity coefficient-based 

method based on the calculation of gradients. In this method, the derivatives of 

pressure as well as saturation with respect to sensitive coefficients (model 

parameters) are calculated ([18], [19]). These are later used in calculating the 
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Hessian matrix for second order, gradient-based optimization algorithms [20]. 

Carter et al. (1974) proposed two new iterations-based non-linear programming 

methods, applicable to minimize the objective function of a compressible, single 

phase flow reservoir. For calculating sensitivity coefficients, these techniques, 

however, utilized the method of Jacquard and Jain. The authors claimed that the 

method proved to be equally efficient to produce a good match of calculated and 

observed pressures when compared with earlier studies, for pre-defined constraint 

intervals. However, the method is limited to cases with single phase flow and needs 

higher computational times for calculating sensitivity coefficients with lower 

efficiency near the optimum solution. Hiraski (1975) proposed a semi-automatic 

procedure of history matching that matches oil production data only, but, was not 

suitable to complex reservoirs. This method was used to calculate the reservoir 

parameters by deducing a relation between the dimensionless cumulative injection 

and the derivative of cumulative oil production with respect to reservoir parameters. 

Chen et al. (1974) and Chavent et al. (1975) showcased history matching problems 

as control problems, in which the observed data like pressure is considered as a 

state variable and reservoir parameters like permeability as forcing variables ([21], 

[22]). The adjoint method was applied to calculate the gradient of the objective 

function, which initially computes the derivative of the objective function and later 

uses a first order gradient-based optimization algorithm. It is demonstrated on a 

synthetic and a real Saudi Arabian reservoir (both being single phase) considering 

the reservoir parameters as continuous functions of space and showed that the time 

of computation for optimization was lower than that taken by conventional 

constant-zone gradient optimization method [21]. The technique was applied to a 

semi-realistic single phase reservoir model by Chavent et al. The steepest descent 

method and adjoint method were used to minimize a non-quadratic objective 

function and compute the gradients respectively, during which the generation of 

impractical values of transmissivities was avoided during computation. However, 

this methodology needs more iterations for non-linear problems and hence is more 

suitable for linear problems [22]. Watson et al. (1980) applied both the earlier 
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methods and used the optimal control approach to successfully estimate porosity, 

spatially varying permeability and relative permeabilities [23].  

Yang and Watson (1988) applied the variable-metric method coupled with optimal 

control theory, another optimization technique, for automated history matching 

[24]. These researchers, after testing their methodology on two 2-phase, 1-

dimensional and 2-dimensional synthetic reservoir models, reported that variable-

metric methods, viz., self-scaling variable metric (SSVM) method and the 

Broyden/Fletcher/Goldfarb/Shanno (BFGS) method were more appealing in 

comparison with the steepest descent method and other conjugate-gradient 

methods, except for those cases where the performance metrics are quadratic in 

nature. They, hence, concluded that their method was effective in both ways, viz., 

handling the inequality constraints and bettering the convergence rate. 

Gavalas et al. (1976) and Shah et al. (1978) introduced the Bayesian framework for 

history matching which delivers better guesses of true porosity and permeability 

distributions in reservoirs as compared to the routine zone-gradient optimization 

methods. This probabilistic approach requires prior statistical information (viz., co-

variance and mean) on unknown parameters and then integrates it with the 

geographical information in the objective function so as to minimize the statistical 

uncertainty in estimating reservoir parameters ([25], [26]). The results of this study 

are compared with those results obtained from the sensitivity coefficient method 

and re-parameterization by zonation by Shah et al. (1978) Both the research groups, 

however, testified that the accuracy of the estimates noticeably depend on the 

accurate prior statistical and geological information. 

de Marsily et al. (1984) proposed a method which combined the pilot point method 

and optimal control theory and the technique was applied to parameterize 

groundwater hydrology [27]. The concept was first applied to the field of petroleum 

engineering by Fasanino et al. (1986) in which reservoir parameters like the values 

of the permeability and porosity at predetermined pilot points were disturbed for 

history-matching of a single-phase gas reservoir [28]. The parameters, at locations 
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other than the predetermined pilot points, were found out by interpolation using 

conditional simulation or kriging by using the parameter values at pilot points. 

Hence, the technique does calculate the gradient at pilot points and avoids these at 

all the other grid blocks, thereby reducing the unknown parameters that one has to 

estimate. This method offers rough solutions for the inverse problem of history 

matching coupled with an uncertainty about the location and the quantity of pilot 

points to be specified. A further extension of work on the pilot point method and 

its application to history matching can be seen in other studies ([29] - [33]). The 

pilot point method was successfully applied for estimation of values of the porosity, 

which, later helped in history-matching, as done by Bissell et al. (1997) on a 

synthetic reservoir [31]. Using sensitivity information figured out by a direct 

method which assumed that the high sensitivity regions are prejudiced by location 

of pilot points, optimum locations of the pilot points were established. The query 

of choosing the number and optimal locations of the pilot points was discussed by 

Cuypers et al. [34]. Xue et al. (1997) and Liu and Oliver (2004) reported certain 

drawbacks of the pilot point technique like slower convergence, undershooting or 

overshooting of reservoir parameters at the pilot points that result in massive 

variations of objective functions as iterations advance ([32], [35]). 

The technique suggested by Carter et al. (1974) and Chavent et al. (1975) was 

extended further to multiphase flow studies by Anterion et al. (1989). The method 

was tested on a synthetic, fully implicit, 3-phase, 3-dimensional reservoir and 

reported an enhanced precision of history matched models with fewer simulation 

runs and lower computing time [36]. For calculating the sensitivity matrix, 

applications of gradient simulators are extensively studied by a few researchers 

([37] - [42]). Nevertheless, their expertise suggested avoiding using direct methods, 

as reservoir models with a large number of grid blocks are too complex to be solved 

and consume higher computation time and larger memory size. Killough et al. 

(1995) introduced multiple right hand side iterative linear equation solvers (MRHS) 

for adjoint equations system, which enhanced the gradient solver performance. 

Their methodology was tested on reservoir models up to 10,000 grid blocks and the 
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results obtained from the MRHS iterative solver were compared with those 

obtained from the standard red-black line successive over-relaxation and direct 

solvers [43]. 

A modified Gauss-Newton method was utilized to solve history-matching problem 

of a 3-dimensional synthetic reservoir for estimating the porosity and permeability 

by Tan and Kalogerakis (1992). The authors executed the methodology 

successfully to completely automate the procedure of history matching that helped 

in attaining genuine values of porosity and permeability. They have also reported 

that the Gauss-Newton method is capable of decreasing the number of sensitive 

coefficients to be evaluated [44]. Chu et al. (1995) employed this technique for 

history matching of a single-phase reservoir and attempted to condition the well-

test pressure information with the porosity and permeability distributions of the 

reservoir grid block, with the modified generalized pulse-spectrum technique. 

These researchers reported that the technique accomplished a reasonable evaluation 

of the permeability distribution but not the porosity distribution [45]. Reynolds et 

al. (1996) used this Gauss-Newton methodology for multi-well pressure data 

history matching to assess reservoir parameters, where a subspace method was 

applied, to reduce the size of the Hessian matrix, as parametrization technique. The 

authors declared that notable reduction is seen in the computations times taken fort 

producing realizations [46]. Methodology of Chu et al. (1995) was in applied by He 

et al. (1997) for 1-phase flows reservoirs & generated porosity fields’ by insensitivity 

coefficients [47]. The method was further applied by Li et al. (2003) to a 3-D, three 

phase reservoir problem. Researchers suggested that Gauss-Newton method as well 

as its variants gave highly mismatched well-test pressure data when the process 

started with bad initial guesses. They also reported leisurely convergence for large 

volumes of production data [48]. 

The Levenberg-Marquardt method, a variant of the Gauss-Newton method, was 

used by Bi et al. (2000), where the Hessian matrix was modified for a better 

convergence rate. These researchers have employed the technique to condition 3-
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dimensional stochastic channels to well observations and well-test pressure data 

[49]. Zhang et al. (2003) presented a randomized maximum likelihood (RML) 

method that gave a good initial population for the algorithm and used the 

Levenberg-Marquardt method to condition 2-dimensional stochastic channels to 

well observations and pressure data [50]. This method was later used by Vefring et 

al. (2006) for estimation of properties of reservoirs by minimizing the variance 

between the reservoir simulation model states and corresponding measurements 

from the drilling process. The algorithm showed a slower convergence rate and also 

brought instability for reservoir models with large number of parameters and huge 

production data [51]. 

The higher efficiency of the conjugate gradient or quasi-Newton method can be 

attributed to the fact that this method needs gradients of the objective function to 

be calculated, thus reducing the computational time. Makhlouf et al. (1993) used 

this approach for estimating values of the permeabilities of grid blocks of a 

reservoir with 2-phase and 3-phase flows [52]. For complex history-matching 

problems, limited memory BFGS (LBFGS), another variant of the quasi-Newton 

method, was employed. This proposed method uses values of the objective function 

and gradient, from the preceding iteration that constructs the Hessian 

approximation. These researchers reported extensively on several gradient 

optimizers, viz., pre-conditioned conjugate gradient, LBFGS, BFGS and 

Levenberg-Marquardt for real and synthetic reservoirs and concluded that the 

LBGFS is relatively more efficient than the rest [12]. Liu and Oliver (2004) tested 

the use of the adjoint equation for calculation of the gradient and the quasi-Newton 

method as minimizing algorithms on a 5-spot water injection problem that has 

around 70,000 model parameters [35]. Eydinov et al. (2009) described the 

application of the LBFGS algorithm for evaluating the relative permeability curves 

and porosity and permeability distribution for a 3-phase synthetic reservoir [53]. 

Parish et al. (1993) formulated a knowledge-based system (KBS) for reservoir 

engineers that acts as a decision support tool. The KBS uses instructions like IF 
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THEN, ELSE, statements to make appropriate history matching decisions [54]. 

Roggero and Hu (1998) proposed a stochastic optimization method called as the 

Gradual Deformation method as a substitute to the conventional gradient 

optimization method for conditioning a stochastic 3-dimensional reservoir model 

to the production and well-test data. The problem is formulated as a linear 

combination of two Gaussian realizations with expected covariance and mean to 

create new realizations that match better than the initial generations. The matches 

are further enhanced by integrating them with other equi-probable realizations. The 

process was not stopped until a tolerable match is obtained [55]. Later, Hu (2000) 

made an extension to this methodology and studied various deformations including 

multi-dimensional gradual deformations as well as locally graduals deformations 

corresponding the structural parameters [56]. 

It was further extended and Hu et al. (2001) affirmed its efficacy obtained by 

simulator that can re-constrain facies models of reservoir [57]. After realizing that by 

using gradual deformation algorithm they have not achieved better samples of 

posterior probability density function,  an extra constraint was appended in the 

fitness function which had mismatch in data earlier by Ravalec-Dupin and 

Noetinger (2002) [58]. Caers (2003) applied the gradual deformation method with 

multi-point geostatistics for a streamline simulation model to generate initial 

realizations for history matching [59]. A conclusion was drawn by Liu and Oliver 

(2004) that the gradual deformation method achieved much better results than those 

obtained by the Markov Chain Monte Carlo method [35]. 

The above discussed types of gradient-based techniques quickly converge to the 

optimal solution but does not guarantee global optimum solution. Also, they 

involve calculating first and higher order derivatives of highly nonlinear objective 

functions. Hence, researchers had to divert their focus onto non-gradient based 

stochastic methods to overcome these drawbacks. 
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2.2 NON-GRADIENT BASED METHODS 

Non-Gradient based methods (stochastic algorithms) have certain advantages over 

gradient based methods. These methods are helpful in approaching global optima 

rather than being restricted to local optima compared to gradient methods and do 

not involve rigorous calculations for minimizing the objective function. They 

involve large computation time and large numbers of simulation runs, so that the 

solution converges to a global optimum. These do not require initial guesses in the 

vicinity of the optimum solution, which make them applicable for non-unique 

history matching. In non-gradient based methods, with the help of certain operators, 

a number of equi-probable reservoir models evolve progressively, until the global 

optimum is reached. Various algorithms based on non-gradient based methods are 

now in use, viz., Simulated Annealings (SAT), Scattered Search ing (SSI), Neighborhood 

Algorithms (INA), Particles Swarmin Optimization (PS IO), Ants Colonyal Optimization 

(ACIO), Kalman filters (KFI) and Genetical Algorithms (IGA). 

2.2.1 Simulated Annealing (SA) 

Simulated annealing (SA) is a probabilistic technique that approximates the global 

optimum of a given function. This was introduced by Kirkpatrick et al. (1983) and 

Cerny (1985) ([60], [61]). In a large search space, it is a metaheuristic to 

approximate global optimization and is used often for cases with more discrete 

search spaces. The methodology has been applied for estimating of petrophysical 

properties of a reservoir and conditioning concurrently [62]. These researchers used 

the technique for estimating the capillary pressure for gas/water and relative 

permeability curves simultaneously.  

Sultan et al. (1993) applied SA on a black oil reservoir which was experiencing 

water flooding for automatic history matching and reported that the values 

predicted are in good match with the observed field production data [63]. Ouenes 

and Saad (1993) suggested a novel SA algorithm that helps in reducing computation 

time and applicable for large scale reservoirs for minimizing the objective function 

[64]. Ouenes et al. (1994) applied SA for a fractured reservoir and estimated the 

https://en.wikipedia.org/wiki/Probabilistic_algorithm
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Global_optimization
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reservoir wettability, pore volume, permeability and wellbore properties [65]. Sagar 

et al. (1995) applied the SA technique and minimized an objective function that 

comprised of average permeability data besides the spatial statistics of the reservoir 

obtained from well log/core data [66]. A heat-bath algorithm was proposed for SA 

by Sen et al. (1995) and was applied for predicting permeability fields [67]. 

Abdassah et al. (1996) integrated acoustic impedance data with the conventional 

SA method and achieved a better reservoir simulation [68]. Portellaand and Frais, 

(1999), used the technique of SA integrated with the pilot point method to solve 

automatic history matching problem [69]. 

2.2.2 Scatter Search (SS) 

The technique of Scatter Search is unique, in that it stores given information about 

the global optima in a diverse and elite set of solutions and later exploits this to 

recombine samples. It is an iterative process, in which the initial population is 

partitioned into subsets and the subsets are combined linearly with certain weights. 

The outcomes of recombination are fine-tuned with the help of an embedded 

heuristic and are evaluated for the condition whether or not they should be retained. 

Sousa et al. (2006) applied the SS technique and history matched heterogeneous 

and homogeneous synthetic reservoirs. The problem was framed as an optimization 

problem with uncertainties in parameters to be discretized. This resulted in 

enhancing the accuracy of the outcomes which increased the possible solutions in 

number [70].  

2.2.3 Neighborhood Algorithm (NA) 

It is a global optimization, non-derivative search algorithm in a Bayesian 

framework which is used for sampling the multi-dimensional parameter space. 

Random model sets are generated initially and are then ranked according to the data 

match. Geometrically constructed spatial properties, called as Voronoi cells, are 

utilized to build up new models from the previous best matched models. 



21 
 

The NA algorithm is used to develop history matched models. NA was introduced 

to reservoir applications for highly non-linear problems such as seismic data 

waveform inversion by Sambridge (1999). He claimed that the technique was 

consistent with the distributed systems [71]. Later, a few other researchers, Subbey 

et al. (2004) and Christie et al. (2006), used a Bayesian framework for quantifying 

uncertain parameters in flows through porous media and developed history matched 

models applying NA ([72], [73]). Rotondi et al. (2006) used the technique of NA 

for an offshore gas field that has 7 wells and for which 6 years production data was 

available. They reported that the uncertainty quantification done using Bayesian 

inference and forecasts of production of hydrocarbons matched accurately with 

data, in comparison to other history matching algorithms [74]. The Erbaş and 

Christie (2007) study was more focused on determining the inaccuracies that are 

associated with various sampling algorithms for quantification of uncertainties in 

parameter estimation and reservoir performance predictions. They scrutinized the 

efficiency of NA for generating history-matched models of a real field from the 

North Sea reservoir [75]. Suzuki et al. (2008) pooled NA with ‘similarity distance’ 

measure in order to make it applicable for large reservoir realizations [76].  

2.2.4 Particle Swarm Optimization (PSO) 

PSO is a population based stochastic optimization technique, which is developed 

by Kennedy and Eberhart in 1995. It is a bio-inspired technique and is used for 

continuous and discrete optimization problems. In PSO, the possible solution sets 

are called ‘particles’ which are mobile throughout the search space and the site of 

a particle represents a solution for the problem [77].  

Kathrada (2009) has applied PSO on a synthetic reservoir, when he evaluated the 

technique in conjunction with hierarchal clustering algorithm and generated history 

matched models [78]. PSO was applied by Fernandez Martinez et al. (2009) for 

seismic history matching where the subsurface facies model is conditioned to match 

seismic data with time-lapse and production history. These researchers claimed that 

these methodology is equally good in comparison to other optimization techniques 
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when it comes to convergence as well as uncertainty quantification [79]. Ali 

Ahmadi et al. (2013) have joined IPSO with soft sensor based on ANNI based soft-

sensor and GIA and tested its application to really fields [80]. Literature suggests that 

these PISO can also help in to finding out these optimum locations of wells ([81] - [83]). 

Awotunde (2012) upgraded the basic PSO technique and developed multiple 

history-matched models of permeability distributions [84].  

2.2.5 Ant-Colony Optimization (ACO) 

ACO, an evolutionary approach and applicable to continuous as well as discrete 

variable optimization problems, was introduced by Dorigo et al. (1996). It is a 

population based stochastic optimization method which exploits the swarm 

intelligence and is evolved from the social behavior of ants [85]. As proposed by 

Razavi and Jalali-Farahani (2008), the ACO technique can be used to predict well 

flow pressure, fluid injection rates and optimal well locations for injection and 

production [86]. Rutkowski et al. (2008) applied a multidimensional, continuous 

ACO for evaluating the optimum number of phase separators required in an oil 

industry [87]. Oil-bearing zones of a reservoir are also recognized by applying a 

hybrid particle swarm-ACO algorithm (PS-ACO) [88].  

Hajizadeh (2011) and Hajizadeh et al. (2011) extensively studied differential 

evolution (DE) algorithm and ACO on two reservoirs and achieved a few history-

matched reservoir models. These researchers claimed that ACO provided better- 

quality multiple history-matched models and took fewer simulation runs in 

comparison to the DE algorithm ([89], [90]). 

The ACO combined with the back-propagation algorithm, was proposed by Irani 

and Nasimi (2012) and Hatampour et al. (2013). They tested the algorithm for 

predicting permeability distributions from well log data and proved that the 

algorithm was more effective than the conventional BP algorithm. ACO was 

applied for analyzing waterflood for an oil reservoir with high porosity, low 

permeability and high oil saturation ([91], [92]). 
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2.2.6 Ensemble Kalman Filters (EnKF) 

The EnKF has originated as another version of the Kalman filter for complex 

problems where the sample covariance replaces the covariance matrix [93]. It is a 

recursive filter, wherein, when new data arrives, it computes the next step instead 

of running the full optimization over the horizon, which makes it suitable for 

problems with huge number of variables. EnKF is utilized to update not only static 

parameters, but also dynamic variables of the reservoir model. The EnKF 

calculations generally rely on the reservoir model’s ensemble of realizations. The 

model predictions are combined with new measurements, when available, and the 

realizations get updated.  

Naevdal et al. (2002) applied the EnKF for updating static parameters by fine-

tuning the permeability fields [94]. Gu and Oliver (2005) used EnKF and 

continuously updated permeability, porosity, saturation fields and pressure of a 3-

dimensional reservoir history matching problem. They claimed a fairly good 

history match with reduced computational cost by using small ensemble size. 

However, issues related to porosity and permeability fields overshooting were 

pointed out [95]. EnKF was used in conditioning lithofacies realizations generated 

by pluri-Gaussian model of Liu and Oliver (2005). They have compared the EnKF 

performance with that of gradient-based minimization method for estimating the 

facies boundaries. It was reported that EnKF was found to be more effective for 

history matching the production data [96]. EnKF within an option of confirmings was te 

applied by Wen and Chen (2005) to match production data. These authors testified 

that ensemble size of anything less than 200 will not be able to predict these models ’ 

uncertainties [97].  

Gao et al. (20106) made an attempt to compare these results of EnKF attained 

uncertainty quantifications with these ones computed with the help of Bayesian setting 

within randomized maximum likelihood (RML). The authors have testified that 

results area comparable [98]. Skjervheim et al. (2007) have utilized EnKF ton updated 

https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Sample_covariance_matrix
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these models regularly by assimilating production datum and the obtained 4-D seismic 

datum that has resulted into better permeability field estimates [99].  

Haugen et al. (20108) have tested EnKF fort reservoir history matching by 

envisaging water to oil contact & gas to oil contact. However, it was not very 

successful, as a few issues corresponding to structural parameters’ predictions as 

well as facies distributions (non-Gaussian) were doubted by researchers [100]. The 

authors, Chen et al. (2009) proposed one technique with closed loop that has an 

optimization scheme based on new ensemble with EnKF (EnOpt) which does not 

need any adjoints [101]. Later, the researchers, Agbalaka and Oliver (2008) utilized 

the methodology of EnKF to automate history-matching of facies distribution along 

with production data. Satisfactory results were reported by them, wherein a sub-

spaced methodology was utilized for a 1-phase flow of 2-D and 3-D reservoirs with 

synthetic pressure data [102]. 

EnKF was applied for history matching and characterization of an unconventional 

3-dimenstional steam-assisted gravity drainage oil reservoir by Chitralekha et al. 

(2010). The quality of ensemble realizations was assessed in terms of R-square 

values and their weighted mean square error (WMSE) for distance dependent 

covariance globalization and localization methods that were used for updating the 

values of the permeabilities. It is observed that least error permeability values are 

obtained by the localization method. The EnKF algorithm estimated permeability 

distribution which are compared to those of a 3-dimensional synthetic reservoir and 

gave lower root mean square error (RMSE) for localized EnKF algorithm than with 

the global EnKF algorithm [103]. 

Emerick and Reynolds (2011) significantly improved history matching and 

performance prediction by applying the half-iteration EnKF (H-EnKF) combined 

with the covariance localization method. The authors reported performance 

comparison of a real reservoir between H-EnKF with covariance localization and 

without covariance localization, and claimed that the former method provided 

better history matching and performance prediction [104]. Another variant of the 
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EnKF method, the constrained EnKF (CEnKF) technique, was proposed by Phale 

and Oliver (2011), which also accounts for constraints on credible values of certain 

state variables while data assimilation. These researchers claimed that the technique 

attained better prediction of reservoir properties by enforcing bound constraints on 

saturations and non-negativity constraints on molar densities [105]. Zhang and 

Oliver (2011) studied the uncertainties related with geological structures and 

proposed a technique that updates multiple scales of heterogeneity in the Ensemble 

Kalman filter. These researchers reported that the results obtained have shown 

better history matching and water cut match [106]. 

In order to minimize the sampling error that is occurring at a single update step of 

EnKF, Kovalenko et al. (2012) derived the Euclidean norm distribution of the 

sampling error evolving at the single step update assuming normality of forecast 

distributions and negligible observation error. The methodology was applied on a 

few synthetic reservoir models and the propagation of error at single step update 

was illustrated [107]. A parallel data assimilation framework for quantifying 

uncertainty and characterization of reservoir was introduced by Tavakoli et al. 

(2013), who disbursed multiple realizations among various computers for 

computations. A network was built and the communication among these computers 

was done at the data assimilation step. The technique was tested on a synthetic 

reservoir for Ensemble Smoother (ES) method besides EnKF. These researchers 

concluded that the computation time was reduced and a parallel efficiency of 50% 

was attained for ES in comparison with 35% attained for EnKF [108].  

Leeuwenburgh and Arts (2014) proposed an alternative distance parametrization 

which does not need additional simulation time. The author claimed that the 

proposed technique incessantly shrinks data though still retrieving these required 

important information that results in efficient functioning of EnKF [109]. A novel 

and better parametrization based on truncated Gaussian simulations was introduced 

by Abadpour et al. (2017) to ensure geological realism of history matched models. 

The authors applied this technique and generated realizations, consistent with 
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geological hypothesis, that are constrained to reproduce the field measurements 

[110]. History matching study based on connection information using EnKF was 

attempted by Zha et al. (2018), where well water cut and connection water cut of 

each layer was chosen as production data. The authors reported better results with 

less simulation time [111].  

2.2.7 Genetic Algorithm (GA)  

It is a mathematical modelling algorithm which is based on Darwin’s ‘survival of 

the fittest’. It is a computer-based search procedure inspired from genetics, which 

has widespread application. This process utilizes an initial population of 

individuals, known as chromosomes, which are further processed where they 

undergo inheritance, crossover and mutation operations for several generations that 

obtains potential solutions. The new generation chromosomes are evaluated based 

on a fitness function. 

The methodology of GA has been applied widely in innumerable engineering as 

well as real-world problems, viz., learning robotic behavior [112], prediction of 

protein structure [113], inverse problems in the field of electromagnetics [114], 

designing an optimal neural architecture for developing online soft-sensor [115] 

and several more.  

GA is proved to be an efficient method for inverse history-matching problems and 

reservoir parametrization. Sen et al. (1995) introduced the application of GA for 

reservoir modelling and generated permeability distributions from tracer flow data 

and a set of reservoir outcrops, followed with quantifying uncertainties in 

production forecasts. With a population size of 200, they could achieve global 

optimum solution with values of 0.60, 0.01 and 0.9 as crossover probability, 

mutation probability and update probability, respectively. The researchers also 

reported that the choice of these probabilities and population size largely affects the 

performance of GA [67]. A modified GA for estimating fault throw, shale 

permeability and sand permeability was proposed by Bush and Carter (1996) that 

used steady state genetic algorithm with modified rank selection operator. They 
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claimed that this modified GA when tested on a synthetic PUNQ-S3 reservoir 

outclassed the standard GA [116]. Guerreiro et al. (1998) tested GA to determine 

properties of a reservoir by systematically matching tracer breakthrough profiles 

utilizing parameters such as porosity outside and inside the insertion and geometry 

of insertion. With a population size of 200 and using three different crossover 

operators in their studies, viz., single point operator, two-point operator and uniform 

cross over operator with values of their probabilities as 0.08, 0.48 and 0.24 

respectively and the bit-flip mutation probability as 0.02. They used a rank-based 

elite selection that is helpful in selecting the best realization as per the fitness value 

and reported that the methodology achieved satisfactory results [117]. 

A neural-genetic model for estimating permeability from well log data was 

developed by Huang et al. (1998) that utilized GA for optimizing connection 

weights used for training neural networks. They reported that, though GA 

consistently reduced the performance error as compared to neural networks, 

convergence was slower [118]. However, by integrating a fuzzy reasoning, the 

neural-genetic model was modified to hybrid neural-fuzzy-genetic methodology 

that gave faster convergence [119]. Soleng (1999) used steady state GA for fine-

tuning petrophysical properties such as porosities and permeabilities, of the PUNQ 

S3 synthetic reservoir to actual observations. He claimed the technique was 

reasonably fast at achieving near-optimal solutions in the vicinity of realistic 

reservoir conditions, with a population size of 50. He also suggested the use of a 3-

dimensional crossover operation to nullify the disturbing effect of crossover. He 

applied the technique successfully to a small reservoir, taking a few parameters into 

account for conditioning the field observations, but doubted its efficiency for a 

large-scale reservoir [120].  

Romero and Carter studied the GA optimizer and tested extensively on the PUNQ 

S3 complex synthetic reservoir for history matching and its results are compared 

with those obtained from SA and GA with hill climbing (2001). Various parameters 

like V-shale, permeability and porosity were encoded in a complex 3-dimensional 
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chromosome structure for which a bit-flip crossover operation is used. All other 

parameters like well-skin factors, relative permeability end points were encoded in 

1-dimensional chromosome for which k-point crossover operator is used. The 

researchers claimed that they achieved better results with the GA optimizer than 

with SA and manual history matching [121]. 

A novel concept, top down reservoir modelling (TDRM), was proposed by 

Williams et al. (2004) for history matching of production data and quantifying 

uncertainties. The TDRM is currently trademarked technology of British 

Petroleum. This approach utilizes a GA optimizer in combination with a reservoir 

simulation model to determine sensible multiple history-matched models. The tool 

was successfully applied to 18 gas and oil reservoirs. They have reported that a 

20% increase in the predicted net present value (NPV) of projects resulted through 

the TDRM approach [122]. The TDRM workflow was successfully applied in the 

British Petroleum Trinidad and Tobago assets to determine ideal well locations in 

an oil field with production history available for 30 years from 13 wells by Kromah 

et al. (2005) [123]. Apart from TDRM, GA is also used in MEPO® and 

ENABLE®, commercial software that are helpful in improving the quality of 

history matched models. Choudhary et al. (2007) attempted quantifying subsurface 

uncertainty, automatic history matching and infill well optimization, using MEPO® 

for two West African mature fields [124].  

The modelling of a fractured reservoir using available field data is often difficult 

and levies large computational costs. Lange (2009) used discrete fracture network 

flow simulator (DFN) coupled with GA based inversion methodology for 

characterizing such reservoir models [125]. Han et al. (2011) proposed multi-

objective optimization (MOO) utilizing an altered GA optimizer for production 

history matching of water-flooding projects. The methodology was tested on a 2-

dimensional heterogeneous reservoir with 1 injection well and 3 production wells, 

divided into 400 grid blocks. These researchers reported better prediction with 
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small performance error and a better estimate of reservoir parameters with their 

method [126]. 

Dehghan Monfared et al. (2012) combined subsurface response modelling with GA 

for inverse history matching. These researchers constructed proxy reservoir models 

which constitute as simulator response, with the help of available measurements. 

They then built a reservoir model which is based on minimized proxy model 

generated by GA, which took fewer runs and less time at lower cost in comparison 

with other techniques. The same has been tested on a field whose production history 

is known for 41 years and history-matched models were achieved which were fairly 

consistent with water cut, shut-in pressure, observed oil rate and repeated formation 

test pressure [127]. Murgante et al. (2012) tested GA and differential evolution 

(DE) on four case studies each with varying number of parameters, for history 

matching [128]. Ahmadi et al. (2012) designed a soft sensor to predict 

permeabilities of a real reservoir, based on a feed-forward neural network. The 

authors used PSO and a hybrid GA for optimizing the soft sensor. Values off the 

reservoirs’ parameters’ optimal weights were attained using IGA. Also, the 

effectiveness of the se proposed to methodology waste demonstrated to from these results 

obtained from the se developed soft sensor and unconventional neural network [80]. The 

usage and application off Adaptive Genetic Algorithm (AIGA) recoupled with higher 

order neural networks (HONN) fort reservoirs’ history matching as well as for oils 

reproduction forecasting respectively was explored by Chakra [2]. However, the 

author reported that the grid block size used in her studies must have introduced 

some error as a coarse grid block size was chosen. 

Min et al. (2014) proposed a vigorous Pareto-based history matching model that 

accounts for complex relationships among well performances. The methodology, 

integrated with Successive Linear Objective Reduction (SLOR) and Dynamic Goal 

Programming (DGP) for dimension-reduction and preference-ordering 

respectively, named as DS-MOGA (DGP and SLOR with Multi-objective Genetic 

Algorithm), was applied to a heavy oil reservoir for history matching and 
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production forecasting. These researchers have reported that multiple qualified 

trade-off solutions can be obtained using this methodology when compared to 

traditional MOO techniques [129]. While solving history matching and 

optimization problems, there is a possibility to come across several potentially 

conflicting objectives. The objective functions involving multiphase production 

history, differences in reservoir pressure and 4-dimensional time-lapse seismic data 

are a few examples that are potentially conflicting. Park et al. (2015) proposed a 

Pareto-based multi-objective evolutionary algorithm (MOEA) that directly uses the 

dominance relation for fitness function. They applied the proposed Pareto-based 

MOEA to 2-dimensional synthetic and 3-dimensional real reservoirs and reported 

that their methodology outperforms conventional GA that is used for history 

matching [130].  

Kam et al. (2017) have demonstrated the utility of a multiscale approach by 

combining MOGA for global history-matching with a streamline-based joint 

inversion for local calibration. They history-matched three-phase production data 

and bottom hole pressure. The method was tested on the Norne field in the North 

Sea [131]. Carneiro et al. (2018) successfully evaluated a geostatistical multi-

objective history matching method to the benchmark PUNQ-S3 reservoir problem 

where 12 objectives were targeted [132]. They claimed that the purpose of history 

matching was achieved, without suffering significant computational costs, the 

credit of which is due to the selection criteria used in the cascading selection step. 

Zhang et al. (2019) have utilized a diverse subset of history matched models to 

generate optimal solutions using NSGA-II for optimal design of chemically 

enhanced oil recovery. The authors have implemented History matching quality 

index (HMQI) with Moving linear regression analysis to evaluate simulation results 

from history matching process [133]. A hierarchical multi-scale history matching 

methodology was presented which has attempted to combine GA with streamline 

method for calibration of fracture permeabilities for a HPHT tight gas reservoir 

located in China using dual porosity models by Chen et al.(2020) [134]. Chai et al. 

(2021) proposed a hybrid approach of GA and PSO optimization techniques, named 
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as Genetical Swarm Optimization (GSO) and developed optimal field development 

strategy for a South Cowden reservoir in which water flooding has been 

implemented [135]. A history matched model developed using the application of 

NSGA-II combined with multi-resolution reduced physics model was used for 

performance prediction and drainage volume visualization by Fu et al. (2023) [136]. 

In this research, two techniques viz. NSGA-II and NSGA-II coupled with 

Sequential Gaussian Simulation (SGSIM) are applied to the problem of history 

matching. Novelty of the work is application of NSGA-II and coupling NSGA-II 

with SGSIM, for the problem of history matching. In order to reduce the large 

number of variables, a network of pilot points is chosen and a geo-statistical 

interpolation approach (SGSIM) is used to estimate the other variables. 
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CHAPTER 3 

SIMULATION APPROACH TO FLUID FLOW THROUGH A 

POROUS MEDIUM 

Reservoir modeling has two major components: static model and dynamic model. 

Static model, specifically provides the framework of geological and structural 

features of the reservoir found during the exploration stage. The geologist does the 

job of mapping the sedimentary rock layer outcrops for locating the subsurface 

structural traps like domes and anticlines. Petroleum geologists identify the 

subsurface structure by applying geological techniques such as 2D, 3D seismic 

surveys, satellite images, sparse well log data and borehole images. Wireline well 

logs and seismic surveys are helpful in recognizing the stratigraphy of the reservoir 

and trace the relation between the rock layers. The reservoir boundary, zonation 

and sectoring are included in the geological modeling. Seismic interpretations play 

a vital role in identifying the rock deformations such as faults or folding and tilting. 

Porosity and permeability and their distributions at locations other than sampling 

locations, evaluated using geostatistical method, are also defined in the geological 

model. However, the reservoir model becomes dynamic when the rock-fluid 

properties such as connate water saturations, fluid saturations, relative 

permeabilities and aquifer properties are incorporated in the reservoir to understand 

the fluid movement within the system. After the reservoir model is equipped with 

all such details (some of them such as rock static properties may be tentative), one 

can proceed to evaluate the movement of the reservoir fluids (oil, gas and water) 

under the available driving force. This is called flow simulation. 

Reservoir flow simulation is a crucial task to predict the performance of the 

reservoir under study. The reservoir simulator mainly comprises of a set of non-
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linear partial differential equations that have suitable initial and boundary 

conditions, which can describe the hydrodynamic fluid flow behavior within the 

reservoir over time. In this chapter, the formulation used for black oil reservoir 

modeling model is described. Black oil modelling is used for reservoir situations 

where fluid flow behavior is modeled using reservoir pressure and not considering 

the effects of fluid phase composition on flow behavior. Black oil model assumes 

oil and gas to be single components and no mass transfer is allowed between phases. 

This is strictly not true but is a reasonable approximation for heavy oil. These 

models have been successfully applied to water flooding, inert gas injection, etc. 

However, these models do account for the solubility of gas in oil and water, 

dependent only on pressure. In the black oil flow model, the fluid properties 

characterized by the PVT table that comprise of formation volume factors and 

solution gas-oil ratios vary as a function of pressure. Compositional models, on the 

other hand, consider oil and gas to be composed of individual hydrocarbons such 

as methane, ethane and heavier components. Mass transfer is allowed to take place 

based on vapor-liquid equilibrium (VLE). In compositional flow model, the PVT 

table additionally includes changes in the fluid compositions (oil and gas mole 

fractions) as a function of pressure. Hence, in case of compositional models, it is 

necessary to write material balance equations, component-wise, unlike black oil 

models where these equations can be written based on phases (oil, gas and water). 

The formulation of partial differential equations for reservoir modeling presented 

in this chapter is adapted from the literature ([137]). 

3.1 DEFINITION OF PROPERTIES 

There are various rock and fluid properties in the context of petroleum reservoirs, 

which are used in developing a numerical model. Definitions of these properties are 

given below. 

Porosity (φ): Rock porosity represents the void space in the porous media, where 

the fluids get accumulated. Porosity is defined as the ratio of pore volume to the 
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total bulk volume of the rock. It is expressed either in fraction or percentage and is 

a dimensionless quantity. The porosity of rock can be mathematically expressed as:                        

                                 𝜑 =  
𝑃𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
                                                     (3.1) 

If the rock is compressible, porosity is dependent on the fluid pressure. There are, 

mainly, two types of porosity, effective and total porosity. The effective porosity is 

the ratio of interconnected pore volume to the bulk volume, whereas, the total 

porosity represents the ratio of total volume of the pore space to the bulk volume. 

Permeability (k): It is termed as the capability of a rock to transmit fluid through 

the interconnected pore space.  Mathematically, it is defined by Darcy’s law which 

states  

                                                𝑞𝑥 = −
𝑘 ∆𝑃 𝐴

𝜇𝐿
                                                       (3.2) 

where, qx   is the flow rate in the x-direction, ΔP/L is the pressure gradient causing 

the flow, A is the flow area and µ is the fluid viscosity. It is expressed in Darcy or 

millidarcy (mD). When the reservoir rock is completely saturated with one phase 

fluid, it is termed as absolute permeability. Effective permeability is the capability 

of the rock to transmit fluid through interconnected pore space, in presence of other 

immiscible fluids. Permeability is also a rock property and therefore, varies with 

space and flow directions.  

Fluid Saturation (S): Saturation can be termed as that percent, or fraction, of the 

pore volume occupied by a particular fluid phase (oil, gas, or water) in the void 

space. Saturation is mathematically defined as:   

                                 𝑆 =  
𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐹𝑙𝑢𝑖𝑑

𝑃𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒
                                           (3.3)  

All saturation values are based on pore volume and not on the gross reservoir 

volume. The saturation of each individual phase ranges between 0 to 100%. For a 

three phase fluid flow of oil, gas and water, the sum of the saturations is 100%, i.e.,  
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                                        𝑆𝑜 + 𝑆𝑔 + 𝑆𝑤 = 1                                                         (3.4)  

where, So, Sg and Sw corresponds to the fractional saturation of oil, gas and water, 

respectively.  

Capillary Pressure (PC): When two immiscible fluids are in contact, there is a 

discontinuity in pressure between them, which primarily depends on the curvature 

of the interface separating these fluids. This difference in pressure is referred to as 

the capillary pressure and mathematically defined as  

                                    𝑃𝐶 = 𝑃𝑛𝑤 − 𝑃𝑤                                                                (3.5)  

where, Pw and Pnw are the pressures in wetting and non-wetting phases respectively. 

That is, the pressure excess in the non-wetting fluid is the capillary pressure, and is 

a function of saturation. 

Relative Permeability (kr): When there is a simultaneous flow of two or more 

fluids, at a specific saturation, the ratio of the effective permeability of the 

corresponding phase to the absolute permeability is termed as the relative 

permeability of the corresponding phase. It is affected by the pore geometry, 

wettability, fluid viscosity and saturation history. The relative permeability is 

dimensionless and varies between zero and one.  

                                      𝑘𝑟 = 
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦
                                            (3.6)  

When the reservoir displacement process is dominated by gravity, the relative 

permeabilities are functions of saturations, and it is only essential to know the end-

point saturations, the irreducible water saturations and the residual oil saturations. 

The residual oil saturation is an important parameter used to determine the overall 

oil recovery.  

Mobility (λ): The ratio of the effective permeability to the phase viscosity is termed 

as mobility of a fluid phase. It is expressed as  
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                                         λ =  
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑃ℎ𝑎𝑠𝑒 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦
                                  (3.7)  

Phase: Phase is a homogeneous region of a fluid separated from another phase by 

an interface, e.g., oil, gas or water. Two phases are said to be immiscible if both the 

phases cannot be mixed in any proportion to form a homogeneous solution.  

Component: Component refers to a single chemical entity that may be present in a 

phase, e.g., the aqueous phase contains components like water (H2O), sodium 

chloride (NaCl) and dissolved oxygen (O2).  

Compressibility (Cf): The change in volume (V) or density (ρ) of the fluid with 

respect to the pressure (p) is termed as the compressibility of the fluid and is 

expressed as  

                                  𝐶𝑓 = −
1

𝑉
 (
𝜕𝑉

𝜕𝑝
)
𝑇
= −

1

𝜌
 (
𝜕𝜌

𝜕𝑝
)
𝑇

                                       (3.8)  

3.2 DEVELOPMENT OF FLOW EQUATIONS THROUGH POROUS 

MEDIUM 

The flow equation for a black oil model can be derived in a stepwise manner from 

the conservation of mass equation and Darcy’s law, utilizing fluid potentials and 

constraints on saturations. 

The equation for the conservation of mass can be generally written as  

    Mass in - Mass out + Mass generated - Mass depleted = Mass accumulated 

Initially, the multiphase flow equations can be formulated for 1-D flow, which can 

be expanded further for 2-D and 3-D flows. Consider an element (Fig 3.1) of 

reservoir of dimensions, Δx, Δy and Δz. 

 

Figure 3.1: Element of a reservoir with dimensions Δx, Δy and Δz 
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For 1-D fluid flow in the x-direction, applying the conservation of mass equation 

leads to 

{[�̇�𝑐𝑥𝐴𝑥]𝑥 − [�̇�𝑐𝑥𝐴𝑥]𝑥+𝛥𝑥}Δt + qmcΔtVb = Vb[(𝑚𝑣𝑐)𝑡+∆𝑡 − (𝑚𝑣𝑐)𝑡] (3.9) 

where, �̇�𝑐𝑥 = mass flux of component ‘c’ (c = oil, gas or water) 

𝐴𝑥 = cross-sectional area of flow in the x direction (= ΔyΔz), independent of x 

Δt = time interval 

qmc = mass flow rate of component ‘c’ per unit volume 

qc = volume rate of component ‘c’ per unit volume 

Vb = volume of the element = ΔxΔyΔz = AxΔx 

𝑚𝑣𝑐 = mass of component ‘c’ per unit volume of porous medium.  

Eqn (3.9) gives 

                                    - 
𝜕(�̇�𝑐𝑥)

𝜕𝑥
 + qmc = 

𝜕(𝑚𝑣𝑐)

𝜕𝑡
                                    (3.10) 

For any phase, ‘i’, the mass flux is the density times the Darcy velocity: 

For oil, �̇�𝑜 = ρ𝑜𝑢𝑜                                                                (3.11a) 

For water, �̇�𝑤 = ρ𝑤𝑢𝑤                                                               (3.11b) 

For free gas, �̇�𝑓𝑔 = ρ𝑔𝑢𝑓𝑔                                                               (3.11c) 

For the solution-gas,  

�̇�𝑠𝑔 = (ρ𝑔𝑠𝑐
𝑅𝑠

𝐵𝑜
)𝑢𝑜                                                                       (3.11d) 

Here, Bi is the formation volume factor of phase, ‘i’, defined as the ratio of volumes 

of the reservoir pore space of ‘i’, to the volume of ‘i’ at standard conditions, i.e.,  

Bi = 
𝜌𝑖𝑠𝑐

𝜌𝑖
= 

𝑞𝑖

𝑞𝑖𝑠𝑐
, with i = oil, water, gas; ρ

𝑐
 = density of component ‘c’; ρ

𝑐𝑠𝑐
 = 

density of component ‘c’ at standard conditions and Rs (= Rso) is the solubility of 

the gas in oil. 

The solubility of gas in water (Rsw) is assumed to be negligible. 
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The mass of component, ‘c’, per unit volume of the porous medium, is given by 

For c = solution gas, 

𝑚𝑣𝑐 = 𝜑(ρ
𝑔𝑠𝑐

𝑅𝑠

𝐵𝑜
)𝑆𝑜                                                                        (3.12a) 

For c = oil, water, free gas 

𝑚𝑣𝑐 = 𝜑ρ
𝑐
𝑆𝑐,                                                    (3.12b) 

with 𝜑 = porosity and 𝑆𝑖 = saturation of phase ‘i’  

Substituting (3.12b) in equation (3.10),  

For oil, - 
𝜕(ρ𝑜𝑢𝑜𝑥)

𝜕𝑥
 + qmo = 

𝜕(𝜑ρ𝑜𝑆𝑜)

𝜕𝑡
                                                                 (3.13) 

Putting ρo = 
𝜌𝑜𝑠𝑐

𝐵𝑜
 in the above, we get 

- 
𝜕( 

𝜌𝑜𝑠𝑐
𝐵𝑜

 𝑢𝑜𝑥)

𝜕𝑥
  + qmo = 

𝜕(𝜑 
𝜌𝑜𝑠𝑐
𝐵𝑜

 𝑆𝑜)

𝜕𝑡
 

=> - 
𝜕( 

1

𝐵𝑜
 𝑢𝑜𝑥)

𝜕𝑥
  + 

𝑞𝑚𝑜

𝜌𝑜𝑠𝑐
 = 

𝜕(𝜑 
𝑆𝑜
𝐵𝑜
)

𝜕𝑡
 

=> −
𝜕( 

1

𝐵𝑜
 𝑢𝑜𝑥)

𝜕𝑥
 + 𝑞𝑜𝑠𝑐 =  

𝜕(𝜑 
𝑆𝑜
𝐵𝑜
)

𝜕𝑡
                                                               (3.14a) 

with 𝑞𝑜𝑠𝑐 = volumetric flow rate of oil at standard conditions per unit volume. 

Similarly for water, 

- 
𝜕( 

1

𝐵𝑤
 𝑢𝑤𝑥)

𝜕𝑥
 + 𝑞𝑤𝑠𝑐  =  

𝜕(𝜑 
𝑆𝑤
𝐵𝑤
)

𝜕𝑡
                    (3.14b) 

For gas, which is present in the reservoir as free gas and solution gas (dissolved in 

oil), 

- 
𝜕(�̇�𝑓𝑔𝑥+ �̇�𝑠𝑔𝑥)

𝜕𝑥
 + (𝑞𝑚𝑓𝑔 + 𝑞𝑚𝑠𝑔) =  

𝜕(𝑚𝑣𝑓𝑔+ 𝑚𝑣𝑠𝑔)

𝜕𝑡
      (3.14c) 

But, 𝑞𝑚𝑓𝑔 = 𝑞𝑓𝑔 𝜌𝑔 and 𝑞𝑚𝑠𝑔 = 𝑞𝑜(ρ
𝑔𝑠𝑐

𝑅𝑠

𝐵𝑜
) 
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=> (𝑞𝑚𝑓𝑔 + 𝑞𝑚𝑠𝑔) = ρ
𝑔𝑠𝑐
( 
𝑞𝑓𝑔

𝐵𝑔
+
𝑅𝑠

𝐵𝑜
𝑞𝑜) 

=> (𝑞𝑚𝑓𝑔 + 𝑞𝑚𝑠𝑔) = ρ
𝑔𝑠𝑐
( 𝑞𝑓𝑔𝑠𝑐 + 𝑅𝑠𝑞𝑜𝑠𝑐)  

=> (𝑞𝑚𝑓𝑔 + 𝑞𝑚𝑠𝑔) = ρ
𝑔𝑠𝑐
(𝑞𝑔𝑠𝑐)           (3.15) 

Substituting Eqn. (3.15) and Eqn. set (3.11) in (3.14c), we get  

- 
𝜕(ρ𝑔𝑢𝑓𝑔𝑥+ (ρ𝑔𝑠𝑐

𝑅𝑠
𝐵𝑜
)𝑢𝑜𝑥)

𝜕𝑥
 + ρ

𝑔𝑠𝑐
(𝑞𝑔𝑠𝑐) =  

𝜕(𝜑ρ𝑔𝑆𝑔+ 𝜑(ρ𝑔𝑠𝑐
𝑅𝑠
𝐵𝑜
)𝑆𝑜)

𝜕𝑡
 

Dividing it with ρ
𝑔𝑠𝑐

 

                    - 
𝜕(

1

𝐵𝑔
𝑢𝑓𝑔𝑥+ (

𝑅𝑠
𝐵𝑜
)𝑢𝑜𝑥)

𝜕𝑥
 + 𝑞𝑔𝑠𝑐 =  

𝜕(𝜑  
𝑆𝑔

𝐵𝑔
 + 𝜑 ( 

𝑅𝑠
𝐵𝑜
)𝑆𝑜)

𝜕𝑡
      (3.16) 

The set of equations (3.14a), (3.14b) and (3.16) are mass conservation equations 

for oil, water and gas respectively for a 1-D flow of multi-phase black oil model. 

Each of the terms in these equations have units of volume at standard conditions 

per time. 

The fluid potential, ∅𝑖 ≡ 𝑃𝑖 + 𝜌𝑖𝑔ℎ, where Pi = pressure of phase ‘i’ and h = 

hydraulic pressure head.  

Darcy’s law relates the flow velocity to the pressure gradient and is expressed as  

𝑢𝑥 = −
𝑘

𝜇
 
𝜕∅

𝜕𝑥
           (3.17) 

where k is the absolute permeability in the direction of flow, µ is the fluid viscosity 

and 
𝜕∅

𝜕𝑥
 is the pressure gradient. 

Substituting Darcy’s velocity in equation (3.14a), we obtain  

 
𝜕( 

1

𝐵𝑜
 
𝑘𝑜
𝜇𝑜
 
𝜕∅𝑜
𝜕𝑥
 )

𝜕𝑥
 + 𝑞𝑜𝑠𝑐 = 

𝜕(𝜑 
𝑆𝑜
𝐵𝑜
)

𝜕𝑡
 

=> 
𝜕( 

𝑘𝑜
𝜇𝑜𝐵𝑜

 
𝜕∅𝑜
𝜕𝑥
 )

𝜕𝑥
 + 𝑞𝑜𝑠𝑐 = 

𝜕(𝜑 
𝑆𝑜
𝐵𝑜
)

𝜕𝑡
        (3.18a) 

Similarly for water,  
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𝜕( 

𝑘𝑤
𝜇𝑤𝐵𝑤

 
𝜕∅𝑤
𝜕𝑥
 )

𝜕𝑥
 + 𝑞𝑤𝑠𝑐  =  

𝜕(𝜑 
𝑆𝑤
𝐵𝑤
)

𝜕𝑡
          (3.18b) 

and for gas,  

  
𝜕(

𝑘𝑔

𝜇𝑔𝐵𝑔
 
𝜕∅𝑔

𝜕𝑥
+ 
𝑅𝑠
𝐵𝑜
 
𝑘𝑜
𝜇𝑜
 
𝜕∅𝑜
𝜕𝑥
)

𝜕𝑥
 + 𝑞𝑔𝑠𝑐 =  

𝜕(𝜑  
𝑆𝑔

𝐵𝑔
 + 𝜑 ( 

𝑅𝑠
𝐵𝑜
)𝑆𝑜)

𝜕𝑡
     (3.18c)      

Expanding ∅𝑖 as ∅𝑖 = 𝑃𝑖 + 𝜌𝑖𝑔ℎ, the set of equations (3.18a), (3.18b) and (3.18c) 

can now be written, respectively, as 

𝜕( 
𝑘𝑜
𝜇𝑜𝐵𝑜

 (
𝜕𝑃𝑜
𝜕𝑥
+ 
𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
 ))

𝜕𝑥
 + 𝑞𝑜𝑠𝑐 = 

𝜕(𝜑 
𝑆𝑜
𝐵𝑜
)

𝜕𝑡
     (3.19a) 

𝜕( 
𝑘𝑤

𝜇𝑤𝐵𝑤
(
𝜕𝑃𝑤
𝜕𝑥
+ 
𝜕(𝜌𝑤𝑔ℎ)

𝜕𝑥
 ) )

𝜕𝑥
 + 𝑞𝑤𝑠𝑐  = 

𝜕(𝜑 
𝑆𝑤
𝐵𝑤
)

𝜕𝑡
     (3.19b) 

𝜕(
𝑘𝑔

𝜇𝑔𝐵𝑔
 (
𝜕𝑃𝑔

𝜕𝑥
+ 
𝜕(𝜌𝑔𝑔ℎ)

𝜕𝑥
 )+ 

𝑅𝑠
𝐵𝑜
 
𝑘𝑜
𝜇𝑜
 (
𝜕𝑃𝑜
𝜕𝑥
+ 
𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
 ))

𝜕𝑥
 + 𝑞𝑔𝑠𝑐 = 

𝜕(𝜑  
𝑆𝑔

𝐵𝑔
 + 𝜑 ( 

𝑅𝑠
𝐵𝑜
)𝑆𝑜)

𝜕𝑡
   (3.19c) 

The phase pressure is expressed in terms of the capillary pressure as 

PCw = Po – Pw   => Pw = Po – PCw 

PCg = Pg – Po  => Pg = Po + PCg 

Applying the above equations, to represent equations (3.19b) and (3.19c) in terms 

of Po, PCw and PCg 

𝜕( 
𝑘𝑤

𝜇𝑤𝐵𝑤
(
𝜕𝑃𝑜
𝜕𝑥
−
𝜕𝑃𝐶𝑤
𝜕𝑥

+ 
𝜕(𝜌𝑤𝑔ℎ)

𝜕𝑥
 ) )

𝜕𝑥
 + 𝑞𝑤𝑠𝑐  =  

𝜕(𝜑 
𝑆𝑤
𝐵𝑤
)

𝜕𝑡
      (3.20) 

𝜕(
𝑘𝑔

𝜇𝑔𝐵𝑔
 (
𝜕𝑃𝑜
𝜕𝑥
+
𝜕𝑃𝐶𝑔

𝜕𝑥
+ 
𝜕(𝜌𝑔𝑔ℎ)

𝜕𝑥
 )+ 

𝑅𝑠
𝐵𝑜
 
𝑘𝑜
𝜇𝑜
 (
𝜕𝑃𝑜
𝜕𝑥
+ 
𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
 ))

𝜕𝑥
 + 𝑞𝑔𝑠𝑐  =  

𝜕(𝜑  
𝑆𝑔

𝐵𝑔
 + 𝜑 ( 

𝑅𝑠
𝐵𝑜
)𝑆𝑜)

𝜕𝑡
              

(3.21) 

The total mass balance equation for all the phases can be obtained by performing 

the arithmetic calculation of multiplying eqn (3.19a) with Bo, multiplying eqn 

(3.21) with Bg, multiplying eqn (3.20) with Bw and then adding them. 

With 𝜆𝑐 = 
𝑘𝑐
𝜇𝑐⁄  , mobility of a component ‘c’ where c = oil, water and gas, 
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𝜕(𝜆𝑜(
𝜕𝑃𝑜
𝜕𝑥
+ 
𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
 ))

𝜕𝑥
 + 𝑞𝑜 + 

𝜕( 𝜆𝑔(
𝜕𝑃𝑜
𝜕𝑥
+
𝜕𝑃𝐶𝑔

𝜕𝑥
+ 
𝜕(𝜌𝑔𝑔ℎ)

𝜕𝑥
 )+ 

𝑅𝑠
𝐵𝑜
 𝜆𝑜𝐵𝑔 (

𝜕𝑃𝑜
𝜕𝑥
+ 
𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
 ))

𝜕𝑥
+ 𝑞𝑔 

+ 
𝜕(𝜆𝑤(

𝜕𝑃𝑜
𝜕𝑥
−
𝜕𝑃𝐶𝑤
𝜕𝑥

+ 
𝜕(𝜌𝑤𝑔ℎ)

𝜕𝑥
 ) )

𝜕𝑥
 + 𝑞𝑤   =   

𝜕(𝜑𝑆𝑜 )

𝜕𝑡
 + 

𝜕(𝜑 𝑆𝑔  + 𝜑𝐵𝑔 ( 
𝑅𝑠
𝐵𝑜
)𝑆𝑜)

𝜕𝑡
 + 

𝜕(𝜑 𝑆𝑤 )

𝜕𝑡
   

 =>

𝜕

(

 

(𝜆𝑜+ 𝜆𝑤+ 𝜆𝑔)(
𝜕𝑃𝑜
𝜕𝑥
)+ 𝜆𝑜

𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
 + 𝜆𝑤

𝜕(𝜌𝑤𝑔ℎ)

𝜕𝑥
+

 𝜆𝑔
𝜕(𝜌𝑔𝑔ℎ)

𝜕𝑥
 +(𝜆𝑔

𝜕(𝑃𝐶𝑔)

𝜕𝑥
−𝜆𝑤

𝜕(𝑃𝐶𝑤)

𝜕𝑥
 )+  

𝑅𝑠
𝐵𝑜
 𝜆𝑜𝐵𝑔 (

𝜕𝑃𝑜
𝜕𝑥
+ 
𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
 )
)

 

𝜕𝑥
 + 𝑞𝑜 + 𝑞𝑔 +  𝑞𝑤   

= [
𝜕(𝜑(𝑆𝑜+ 𝑆𝑤+ 𝑆𝑔)+ 𝜑𝐵𝑔 ( 

𝑅𝑠
𝐵𝑜
)𝑆𝑜)

𝜕𝑡
 ]  

With the sum of the saturations of phases, So + Sw + Sg = 1 and the total mobility 

𝜆𝑇 = 𝜆𝑜 + 𝜆𝑤 + 𝜆𝑔  

 

𝜕

(

 
 
𝜆𝑇(

𝜕𝑃𝑜
𝜕𝑥
)+ 𝜆𝑜

𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
 + 𝜆𝑤

𝜕(𝜌𝑤𝑔ℎ)

𝜕𝑥
+ 𝜆𝑔

𝜕(𝜌𝑔𝑔ℎ)

𝜕𝑥
 +

(𝜆𝑔
𝜕(𝑃𝐶𝑔)

𝜕𝑥
−𝜆𝑤

𝜕(𝑃𝐶𝑤)

𝜕𝑥
 )

)

 
 

𝜕𝑥
+ 𝑞𝑜  +  𝑞𝑔  +   𝑞𝑤  +

 
𝜕(
𝑅𝑠
𝐵𝑜
 𝜆𝑜𝐵𝑔 (

𝜕𝑃𝑜
𝜕𝑥
+ 
𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
))

𝜕𝑥
  = [

𝜕(𝜑+ 𝜑𝐵𝑔 ( 
𝑅𝑠
𝐵𝑜
)𝑆𝑜)

𝜕𝑡
]      (3.22) 

Now,   
𝜕(
𝑅𝑠
𝐵𝑜
 𝜆𝑜𝐵𝑔 (

𝜕𝑃𝑜
𝜕𝑥
+ 
𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
))

𝜕𝑥
 = 𝜆𝑜

𝜕(
𝜕∅𝑜
𝜕𝑥
 
𝑅𝑠
𝐵𝑜
 𝐵𝑔)

𝜕𝑥
 

 = 𝜆𝑜 [
𝑅𝑠

𝐵𝑜
 𝐵𝑔.

𝜕2∅𝑜

𝜕𝑥2
+
𝐵𝑔

𝐵𝑜
 
𝜕∅𝑜

𝜕𝑥

𝜕𝑅𝑠

𝜕∅𝑜

𝜕∅𝑜

𝜕𝑥
+
𝑅𝑠

𝐵𝑜

𝜕∅𝑜

𝜕𝑥

𝜕𝐵𝑔

𝜕∅𝑜

𝜕∅𝑜

𝜕𝑥
+

𝜕∅𝑜

𝜕𝑥
𝑅𝑠𝐵𝑔(

−1

𝐵𝑜
2)
𝜕𝐵𝑜

𝜕∅𝑜

𝜕∅𝑜

𝜕𝑥
]  

 = 𝜆𝑜 [
𝑅𝑠

𝐵𝑜
 𝐵𝑔.

𝜕2∅𝑜

𝜕𝑥2
+
𝐵𝑔

𝐵𝑜

𝜕𝑅𝑠

𝜕∅𝑜
(
𝜕∅𝑜

𝜕𝑥
)
2

+
𝑅𝑠

𝐵𝑜

𝜕𝐵𝑔

𝜕∅𝑜
(
𝜕∅𝑜

𝜕𝑥
)
2

+

𝑅𝑠𝐵𝑔(
−1

𝐵𝑜
2)
𝜕𝐵𝑜

𝜕∅𝑜
(
𝜕∅𝑜

𝜕𝑥
)
2

] 

 = 𝜆𝑜 [
𝑅𝑠

𝐵𝑜
 𝐵𝑔.

𝜕2∅𝑜

𝜕𝑥2
]  

(Since the variation of ∅𝑜with ‘x’ is small, (
𝜕∅𝑜

𝜕𝑥
)
2

→  0) 
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 = 𝜆𝑜 [
𝑅𝑠

𝐵𝑜
 𝐵𝑔.

𝜕(
𝜕𝑃𝑜
𝜕𝑥
+ 
𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
)

𝜕𝑥
] 

Now, the R.H.S. of Eqn. (3.22) = [
𝜕(𝜑+ 𝜑𝐵𝑔 ( 

𝑅𝑠
𝐵𝑜
)𝑆𝑜)

𝜕𝑡
]  = [

𝜕(𝜑(1+𝐵𝑔  
𝑅𝑠
𝐵𝑜
𝑆𝑜))

𝜕𝑡
]   

 = 𝜑 [
𝜕((1+𝐵𝑔  

𝑅𝑠
𝐵𝑜
𝑆𝑜)

𝜕𝑡
]    

 = 𝜑 [
𝑅𝑠

𝐵𝑜
 𝐵𝑔.

𝜕𝑆𝑜

𝜕𝑡
+ 

𝑆𝑜

𝐵𝑜
 𝐵𝑔.

𝜕𝑅𝑠

𝜕𝑡
+ 

𝑅𝑠

𝐵𝑜
 𝑆𝑜 .

𝜕𝐵𝑔

𝜕𝑡
− 

𝑅𝑠

𝐵𝑜
2  𝑆𝑜𝐵𝑔.

𝜕𝐵𝑜

𝜕𝑡
]    

 = 𝜑 [
𝑅𝑠

𝐵𝑜
 𝐵𝑔.

𝜕𝑆𝑜

𝜕𝑃𝑜

𝜕𝑃𝑜

𝜕𝑡
+ 

𝑆𝑜

𝐵𝑜
 𝐵𝑔.

𝜕𝑅𝑠

𝜕𝑃𝑜

𝜕𝑃𝑜

𝜕𝑡
+ 

𝑅𝑠

𝐵𝑜
 𝑆𝑜 .

𝜕𝐵𝑔

𝜕𝑃𝑜

𝜕𝑃𝑜

𝜕𝑡
−

 
𝑅𝑠

𝐵𝑜
2  𝑆𝑜𝐵𝑔.

𝜕𝐵𝑜

𝜕𝑃𝑜

𝜕𝑃𝑜

𝜕𝑡
]  

  = 𝜑 [
𝑅𝑠

𝐵𝑜
 𝐵𝑔.

𝜕𝑆𝑜

𝜕𝑃𝑜
+ 

𝑆𝑜

𝐵𝑜
 𝐵𝑔.

𝜕𝑅𝑠

𝜕𝑃𝑜
+ 

𝑅𝑠

𝐵𝑜
 𝑆𝑜 .

𝜕𝐵𝑔

𝜕𝑃𝑜
− 

𝑅𝑠

𝐵𝑜
2  𝑆𝑜𝐵𝑔.

𝜕𝐵𝑜

𝜕𝑃𝑜
] [
𝜕𝑃𝑜

𝜕𝑡
] 

So, equation (3.22) becomes,      

𝜕

(

 

𝜆𝑇(
𝜕𝑃𝑜
𝜕𝑥
)+ 𝜆𝑜

𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
 + 𝜆𝑤

𝜕(𝜌𝑤𝑔ℎ)

𝜕𝑥
+

 𝜆𝑔
𝜕(𝜌𝑔𝑔ℎ)

𝜕𝑥
 +(𝜆𝑔

𝜕(𝑃𝐶𝑔)

𝜕𝑥
−𝜆𝑤

𝜕(𝑃𝐶𝑤)

𝜕𝑥
 )
)

 

𝜕𝑥
 + 𝜆𝑜 [

𝑅𝑠

𝐵𝑜
 𝐵𝑔.

𝜕(
𝜕𝑃𝑜
𝜕𝑥
+ 
𝜕(𝜌𝑜𝑔ℎ)

𝜕𝑥
)

𝜕𝑥
] + 𝑞𝑜  +

 𝑞𝑔  +   𝑞𝑤 = 𝜑 [
𝑅𝑠

𝐵𝑜
 𝐵𝑔.

𝜕𝑆𝑜

𝜕𝑃𝑜
+ 

𝑆𝑜

𝐵𝑜
 𝐵𝑔.

𝜕𝑅𝑠

𝜕𝑃𝑜
+ 

𝑅𝑠

𝐵𝑜
 𝑆𝑜 .

𝜕𝐵𝑔

𝜕𝑃𝑜
− 

𝑅𝑠

𝐵𝑜
2  𝑆𝑜𝐵𝑔.

𝜕𝐵𝑜

𝜕𝑃𝑜
] [
𝜕𝑃𝑜

𝜕𝑡
]   

            (3.23) 

Equation (3.23) is the final equation for 1-D multiphase flow. 

The same can be extended to 3-D multiphase flow which will be given in vector 

notation by the following equation: 

 𝑞𝑜 + 𝑞𝑔 + 𝑞𝑤 + 𝜆𝑜
𝑅𝑠

𝐵𝑜
 𝐵𝑔(∇. ∇∅𝑜) + ∇. [𝜆𝑇∇(∅𝑜 − 𝜌𝑜𝑔ℎ) + 𝜆𝑤∇(𝜌𝑤𝑔ℎ) +

𝜆𝑔∇(𝜌𝑔𝑔ℎ) + 𝜆𝑜∇(𝜌𝑜𝑔ℎ) + 𝜆𝑔∇(𝑃𝐶𝑔) − 𝜆𝑤∇(𝑃𝐶𝑤)]=𝜑 [
𝑅𝑠

𝐵𝑜
𝐵𝑔.

𝜕𝑆𝑜

𝜕𝑃𝑜
+
𝑆𝑜

𝐵𝑜
 𝐵𝑔.

𝜕𝑅𝑠

𝜕𝑃𝑜
+

 
𝑅𝑠

𝐵𝑜
 𝑆𝑜 .

𝜕𝐵𝑔

𝜕𝑃𝑜
−

𝑅𝑠

𝐵𝑜
2  𝑆𝑜𝐵𝑔.

𝜕𝐵𝑜

𝜕𝑃𝑜
] [
𝜕𝑃𝑜

𝜕𝑡
]   
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3.3 PROCEDURE TO OBTAIN SOLUTION 

The governing equations that describe flow through porous medium are highly 

nonlinear partial differential equations (PDE) which relate the saturation and 

pressure changes in space and time throughout the medium. Even with the 

knowledge of boundary conditions (pressure and total mass flux boundary 

conditions) that define the boundaries of the reservoir model, solving these 

equations analytically is not practical and hence, numerical solutions are pursued. 

Any numerical simulator converts these continuous PDEs into finite difference 

equations; hence, for solution purposes the entire reservoir volume is separated into 

three dimensional grid blocks which are almost negligible in volume when 

compared with the total reservoir volume. Also integration on the time scale is done 

in small time steps. The finite difference converts the PDEs into algebraic 

equations, which are subsequently solved by the matrix method. The system of 

equations for the simultaneous multiphase flow has to be solved for fluid pressure 

and saturations. For this purpose, there are different schemes for finite differences 

to form the approximation of PDE such as Explicit, Implicit, and the Crank-

Nicholson schemes. The method of calculating the new pressure value at a later 

time from the pressure value at the current time, is the explicit scheme. 

Mathematically, it can be expressed as 

 𝑃(𝑡 + ∆𝑡) = 𝐹[𝑃(𝑡)]         (3.24) 

Instead, implicit methods find solution by solving an equation involving the current 

value and the later value. It can be expressed mathematically as  

𝐺(𝑃(𝑡), 𝑃(𝑡 + ∆𝑡)) = 0         (3.25) 

Implicit formulations are unconditionally stable but it may require large 

computational time whereas in case of explicit method it may be unstable and are 

solved for small time steps. There are various other solution procedures that can 

solve the simulator equations of reservoir model. They are fully implicit or IMPIS 

(implicit pressure and implicit saturation method), IMPES (implicit pressure and 
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explicit saturation method) and AIM (adaptive implicit method). The IMPIS 

method makes use of capillary pressure relations and evaluates the phase 

saturations implicitly. The technique is very stable and is best suited for complex 

reservoir problems allowing large time-step simulation studies. Though the IMPES 

method is capable of solving the pressure equations implicitly for the pressure 

distribution and saturations distributions explicitly for each point, the method may 

become quite unstable for larger time step simulation studies. Therefore, it is most 

suited for less complicated reservoir problems. The IMPES method is simpler and 

faster than the IMPIS method and is applied for small time step simulations. The 

AIM amalgamates the advantages of both IMPES and IMPIS methods, to calculate 

pressure distribution and saturation. In several cases, the IMPIS method solves for 

grid cells in the difficult regions, which are limited in number, and IMPES method 

solves for simpler regions. This way, the execution time required for simulation 

using AIM is larger than the IMPES and smaller than the IMPIS method, which 

almost can save computational times from 33% to 50%. 

Matrix methods are used to solve the linear equations, which result from finite 

difference transformation. The matrix has three diagonal elements with all other 

elements zero. This system of equations is again solved to find out unknown 

pressure and saturations over the entire volume of the reservoir. The finite 

difference equations are formulated to solve for the dependent parameters over the 

gridded domain. The spatial domain (area of reservoir) is superimposed by some 

type of grid which splits the space into a number of grids, cells or blocks. These 

grids are usually block centered or lattice type at which the dependent parameters 

are calculated. The spatial properties such as porosity, permeability need to be 

defined for each grid block in the domain. The dynamic properties; relative 

permeability, transmissibility, water saturations PVT properties are described such 

that the equations can be solved numerically. Additionally, the fault locations, oil-

water interface, etc., need to be specified to find appropriate solutions. 
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3.4 DESCRIPTION OF RESERVOIR SIMULATOR 

Various commercial numerical reservoir simulators are available for the purpose of 

modeling flow behavior of multiple phase fluids in porous medium. The reservoir 

simulator used in this study is CMG® (Computer Modeling Group Limited, 

Calgary). The simulation model was built using the CMG Builder® module by in-

putting the available rock and fluid data.  CMG developed software that performs 

simulation of reservoirs. Its components include pre-processors viz. Launcher, 

Winprop, Builder, CMOST; simulators viz. IMEX, GEM, STARS; and post-

processor RESULTS. Launcher helps in file management and job scheduling and 

Winprop aids in PVT Phase behavior characterization whereas Builder helps in 

creating/editing a simulation model. CMOST aids in carrying out history matching, 

optimization, sensitivity and uncertainty analysis. IMEX is a 3-phase 4-component 

black oil simulator, GEM is a 3-phase n-component EOS Compositional simulator 

and STARS is a 4-phase n-component Thermal simulator. RESULTS offer grid 

visualization, data extraction and X-Y plots. For the present study, the reservoir 

model is assumed to be a black oil model and hence, CMG’s black oil simulator 

called IMEXTM is used for simulation studies. Schematic describing the simulation 

is as shown below in Fig. 3.2. 

 

Figure 3.2: Schematic of CMG® IMEXTM Simulator 
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The Adaptive Implicit Method (AIM), described earlier, was used for solving the 

simultaneous flow equations, though IMEXTM offers to solve the equations using 

IMPES and IMPIS. In CMG® IMEXTM, AIM is set as the default mode.  

In the present study, two distinct reservoirs were used for the purpose of history 

matching. The first reservoir is a 2-phase (oil and gas), 2-D synthetic reservoir, 

which is taken from the 10th SPE Comparative Solution Project. The second 

reservoir is a real 3-phase (oil, gas and water) 3-D reservoir with all the phases 

flowing simultaneously. For both the cases, the porosity distribution was assumed 

to be fairly well established and known throughout the reservoirs. The dimensions 

of the problem are also kept within manageable limits by establishing relative 

permeability parameters. The only parameter that needs to be calculated for each 

grid block is the permeability. Here, Non-dominated Sorting Genetic Algorithm-II 

is applied in solving these optimization to problem. 
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CHAPTER 4 

HISTORY MATCHING USING NSGA-II:  

2-D SYNTHETIC RESERVOIR 

4.1 INTRODUCTION TO GA & NSGA-II 

The aim of history matching is to generate a geological model by minimization of 

the square of data mismatch. Generally, for a reservoir, production data is available 

over a period of time but the static parameters (porosities and permeabilities) are 

not known and need to be estimated. Apart from solving history matching 

manually, which is a highly tedious and time-consuming job, various stochastic soft 

computing techniques are available to solve it. Here, an evolutionary optimization 

technique called Non-dominated Sorting Genetic Algorithm-II (NSGA-II), a 

variation of Genetic Algorithm (GA), is employed to solve the history matching 

problem. Genetic Algorithm is helpful for solving a problem with single objective 

function. On the other hand, for problems involving multiple objective functions, 

NSGA-II is the better option to solve the problem. The reservoir simulator used in 

the study is CMG® (Computer Modeling Group Limited, Calgary).  For the present 

study, reservoir model is assumed to be black oil model and hence, CMG’s black 

oil simulator called IMEXTM is used for simulation studies.   

Genetic Algorithm is a mathematical modelling algorithm which is based on 

Darwin’s ‘survival of the fittest’. It is a computer-based search procedure inspired 

from genetics, which has widespread application. This process utilizes an initial 

population of individuals (solutions), known as chromosomes, which are further 

processed where they undergo inheritance, crossover and mutation for several 

generations that obtains potential solutions. The new generation chromosomes are 

evaluated based on a fitness function. The concept of GA was conceived by Prof.
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John Holland of the University of Michigan, Ann Arbor, USA, in 1975 [138]. The 

technique commences with one set of several initial solutions which is called as 

initial population within the constraints of the problems. Each solution of the 

population is named a chromosome. On the basis of the ideologies of natural 

selection which is followed by inheritance, crossover and followed by the mutation 

operations, these undergo consecutive iterations called generations, to generate new 

chromosomes, with fitness values better than those compared to the previous 

population. The chromosomes with better fitness values are carried on to the next 

generation. The fitness of each of these are evaluated with the help of an objective 

function, known as fitness function, through which individual chromosomes in the 

search space are characterized based on their performance. The chances of a 

chromosome to be selected to the next generation increases if it is superior in terms 

of the fitness value. To maintain the constant population size during 

iterations/generations, ‘lousier’ parents and offspring chromosomes may get 

rejected. After numerous iterations, finally the algorithm converges to that 

particular chromosomes’ set, which has potential to be solutions to given problem.  

In general, crossover and mutation operators drives the performance of genetic 

algorithm. The crossover operator makes random give & take of genetic matter 

between’ chosen paira of chromosomes’ on the assumption’ that only goode 

chromosomeso’ generates better and fitter chromosomes, closer to the optimal 

solution. It is not necessary that all the chromosomes undergo crossover. A few of 

chromosomes from the population remain unchanged. Crossover operation’ is 

performed with a crossover probability’ (Pc) in those chromosomes’ which are 

selected for recombination. Pc values are usually specified by the user, following 

the optimal values in the range of 0.5 – 1.0, as reported in the literature [2]. There 

are various well-known crossover operators’, viz., 1-point, & 2-point, & k-point, 

uniform & crossover operations etc. Chromosomes are later subjected to the mutation 

operation with a probability, known as mutation probability (Pm). Similar to those 

for Pc, the optimal values of Pm ranges from 0.001 - 0.05, as reported in the 

literature [2]. To maintain genetic diversity, the genetic matter of chromosomes get 
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modified during mutation. This helps in avoiding early convergence to local 

optimum solutions by recalling the lost genetic matter into the population. There 

are various well-known mutation operators like arithmetic mutation, uniform 

mutation, jump mutation, creep mutation, swap mutation, etc. The selection of best 

values of the computational parameters (involving the crossover and mutation 

operations), namely, Pc and Pm, is application-specific and there exist no definite 

rules to select suitable values [139]. Choosing inappropriate values of Pc and Pm 

may provoke imbalance in GA’s exploration and exploitation process, which 

further leads to premature convergence that has a bad impact on GA performance. 

A higher value of Pc abruptly introduces new solutions into the population, thus 

disrupting optimal solutions. Also, higher value of Pm totally transforms GA into 

purely randomized search algorithm, but at the same time, to prevent premature 

convergence, a small mutation is necessary. This process of GA proceeds with 

generating a new population, until some criterion for termination of the algorithm 

is satisfied. The mathematics and detailed description of GA can be found in the 

literature ([140], [141]).  

In case of problems with multiple objectives, a set of optimal solutions (known as 

Pareto-optimal solutions) is obtained instead of one optimal solution. However, it 

is not at all possible to claim that one of these Pareto-optimal solutions is better 

than the other, without any further information. For moving towards the true Pareto-

optimal region, non-dominated sorting algorithm (NSGA) was employed which 

uses a ranking selection method that emphasizes good points and a niche method 

to maintain stable sub-populations of good points [142]. However, to overcome the 

problems like computational complexity and lack of elitism associated with it, 

NSGA-II was introduced [143]. Elitism can be associated to the property of highly 

qualified individuals or chromosomes that possess superiority regarding to the 

objective function. In NSGA-II, all the individuals are arranged by a Pareto 

relationship with the help of a ‘fast non-dominated sorting algorithm’ and a non-

dominated index assigned to them. If individuals has the same rank, diversity can 

be measured by a ‘crowding distance’.  
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4.1.1 Workflow of NSGA-II 

The overall workflow of NSGA-II is given in Fig. 4.1. It starts with feeding values 

of the population size, maximum number of generations, crossover and mutation 

probabilities and ends when a termination criterion is reached. 

 

Figure 4.1 NSGA – II Workflow 

The technique uses fast non-dominated sorting algorithm that sorts the individuals 

[144]. Methodology of sorting is given below. Let us consider ‘P’ represents the 

population and ‘a’ and ‘b’ are individuals, na is the count of solutions dominating 

the solution ‘a’, Sa is the set of solutions that the solution ‘a’ dominates and NDFi 

is the non-dominated front in the population. The algorithm is as follows: 

For each 𝑎 ∈ 𝑃 

𝑆𝑎 =  ∅ 

𝑛𝑎 = 0 

For each 𝑏 ∈ 𝑃 

If 𝑎 < 𝑏 then    //If a dominates b 

𝑆𝑎 =  𝑆𝑎  ∪ {𝑏}   //Add b to the set of solutions dominated by a 

Start

Input population size (N), no. of generations (G), cross over probability & mutation probability

Generate initial parent population of size ‘N’

Evaluate the value of objective functions

Non dominate sorting of the population & calculation of crowding distance

Combine the parent and offspring population

Generate offspring population of size ‘N’

Extract next generation parent population (size ‘N’ ) from non-dominated sorted population 
& Evaluate the value of objective functions

Crossover and mutate the parent population to generate offspring population

Is the termination 
criteria reached?

Yes

Stop

No
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else if 𝑏 < 𝑎 then  //If b dominates a 

 𝑛𝑎 =  𝑛𝑎 + 1   //Increment the domination counter of a 

If 𝑛𝑎 =  0    //a belongs to the first front 

 𝑎𝑟𝑎𝑛𝑘 = 1 

 𝑁𝐷𝐹1 =  𝑁𝐷𝐹1 ∪ {𝑎} 

𝑖 = 1    //Initialize the front counter 

while  𝑁𝐷𝐹1 ≠  ∅ 

 𝑄 =  ∅    //Used to store members of next front 

For each  𝑎 ∈ 𝑁𝐷𝐹𝑖 

       For each 𝑏 ∈  𝑆𝑎 

      𝑛𝑏 =  𝑛𝑏 − 1 

If 𝑛𝑏 = 0 then   //b belongs to the next front 

 𝑏𝑟𝑎𝑛𝑘 = 𝑖 + 1 

 𝑄 =  𝑄 ∪ {𝑏} 

 𝑖 = 𝑖 + 1 

  𝑁𝐷𝐹𝑖 = 𝑄 

Following the algorithm s, every individual/solution is in assigned within a non-

dominated rank and based on this rank, the entire population can be divided into 

many non-dominated fronts. There may be more than one individual in a non-

dominated front which means all of them have the same non-dominated rank. The 

lower is the non-dominated rank, the better is the chance for it’s getting into the 

next generation. All the low ranked individuals will be entering the next generation 

until it exceeds the population size. If the entry of all the similar ranked individuals 

into the next generation is not possible (i.e., if the population size is exceeded), the 

crowding distance comes into the picture. Crowding distance distinguishes 

individuals which are in the same non-dominated front. Crowding distance is the 

mean length of the largest rectangle in the area that contains the individual itself. 

The algorithm below shows the calculation of the crowding distance. 

Input Г      \\ Г is the set of individuals in a non-

dominated front 

 𝑙 = |Г|     \\ l is the number of individuals in Г 

For each  𝑖, set Г[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0  \\ initialize distance 

For each objective m 

 Г =  𝑠𝑜𝑟𝑡 (Г,m)     \\ sort using each objective value 
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 Г[1]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = Г[𝑙]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∞  \\ so that boundary points always get 

selected 

For 𝑖 = 2 𝑡𝑜 (𝑙 − 1) 

 Г[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = Г[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +
(Г[𝑖+1].𝑚−Г[𝑖−1].𝑚)

𝑓𝑚
𝑚𝑎𝑥− 𝑓𝑚

𝑚𝑖𝑛  

where Г[𝑖]. 𝑚 refers to the mth objective function value of the ith individual in set 

Г, 𝑓𝑚
𝑚𝑎𝑥 and 𝑓𝑚

𝑚𝑖𝑛are maximum to & to minimum values for the mth objective function.  

Each individual in the population is now associated with a non-domination rank 

(irank) and a crowding distance (idistance). A partial order relationship is defined, as 

per which, an individual with lower non-domination rank will be selected over 

another individual with higher rank and the individual associated with greater 

crowding distance will be chosen over another individual when both individuals are 

ranked the same. This new set of parent population is then used fort selection, 

crossover ing and later mutation for generating offspring population. 

4.1.2 Generation of the Initial Population  

Initial population is crucial to start with the proceedings. In the problems of history 

matching, the populations generated represent the reservoir ensembles or the 

realizations, which contain the properties of reservoir rock like porosity and 

permeability. Unlike general problems of minimization, it is not appropriate to 

choose a random set of solutions as initial population for history matching. Hence, 

geostatistical methods are used in order to generate initial population ([1], [145]). 

These realizations honor the variogram and spatial correlation of the reservoir 

properties. Stochastic conditional simulation, one of the geostatistical methods, is 

found out to honor` the observations` at the well locations [121]. Here, the & initial 

realizations` weren’t generated` using GSLIB’s VISIM. VISIM is a sequential 

simulation code based on GSLIB ('Geostatistical Software LIBrary', Stanford 

Center for Reservoir Forecasting, Stanford University) for sequential Gaussian and 

direct sequential simulation with histogram reproduction [146]. VISIM can be used 

to generate samples of the a posteriori distribution of a linear inverse problem. 

http://ekofisk.stanford.edu/SCRFweb/
http://ekofisk.stanford.edu/SCRFweb/
http://stanford.edu/
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4.1.3 Inputs to the CMG® Simulator 

A reservoir model is created by integrating many inputs, viz., geological model that 

describes the structure of reservoir, gross-thickness, fluid model (PVT properties), 

permeability and porosity distribution maps, description of simulation grid, rock 

fluid model (saturation, relative permeabilities), faulting, aquifer modeling, fluid 

contact, production and completion history.  

Grid selection and size also play an important role to get accurate results. To ease 

the computational complexities, a reservoir may be divided into a number of 2-D 

or 3-D grid blocks, which can be non-orthogonal, orthogonal, cylindrical, radial, 

Cartesian, and depending on the extent of the reservoir. Grid blocks if chosen in 

larger number make the algorithm slower whereas a small number of grid blocks 

leads to inaccurate results. Grid size, also an input to the simulator, is problem-

dependent and is deliberated separately for investigated case studies. 

Distribution of faults in the reservoir greatly impacts behavior of reservoir. The 

presence of faults not only affects the petro-physical properties of the rock but also 

alters the flow pattern in sedimentological flow blocks. Hence, faults and its’ details 

should also be specified in the model. 

4.1.4 NSGA-II Flowchart for History matching 

As described in earlier sections, generation of initial population using GSLIB and 

developing a reservoir model with the help of various parameters for giving input 

to CMG® IMEXTM Simulator are the unique tasks for History matching problem. 

The objective function for the problem is formulated and subsequently evaluated 

based on the field production data obtained over a period of time and the production 

data obtained from the simulator based on the reservoir model developed. The 

complete flowchart incorporating these in NSGA-II methodology is as given in the 

figure 4.2 
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Figure 4.2: History Matching Problem: NSGA – II Flowchart 

4.2 HISTORY MATCHING OF A 2-D SYNTHETIC RESERVOIR 

It is always apt to test any proposed methodology on relatively-trivial data before 

applying it to real data. In this case, it is essential to validate the proposed history 

matching scheme and methodology along with the developed NSGA-II code. 

Hence, a 2D synthetic reservoir problem was chosen for the purpose of validation 

[103]. As the synthetic reservoir model was built with a known permeability 

distribution, the problem suits our purpose. Production can be evaluated with 

known parameters and history matching can be done. 

4.2.1 Description of Synthetic Reservoir 

The synthetic black oil reservoir, chosen for the validation studies, is a 2-

Dimensional model which consists of 20 layers in the Cartesian’ coordinates system. 

Entire reservoir volume is divided into 100 × 1 × 20 grid blocks with each grid 

block measuring 25ft × 25ft in dimension. Only two phases (oil and gas) are 
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existing in the reservoir. Without any faults present, the reservoir model is 

considered to be completely oil-saturated (without connate water). There are 3 

wells present in the reservoir – 1 (I-1) injector well located at grid block (50, 1, 1) 

and 2 producers (W-1 and W-2) placed on either side of the injector, symmetrically, 

as shown in the Fig 4.3. 

 

Figure 4.3: Schematic of synthetic reservoir 

All the three wells are perforated through 20 layers of the reservoir. It is assumed 

throughout all the layers of the reservoir that it has a constant porosity of 0.2 with 

permeabilities varying in the i direction. The permeability values are assumed to be 

equal in i, j and k directions. The true permeability data of the reservoir is given, 

from which the field production history for a period of 8 years is calculated. In 

addition to the existing wells, two core holes at locations (25, 1) and (75, 1) 

covering all the 20 layers, are considered to be drilled vertically. The values of 

permeability at core hole locations and wells are assumed known. Values of 

permeabilities in remainder of 1900 grid blocks is to be found out for history 

matching. 
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4.2.2 Optimization problem formulation  

The fitness of the chromosome is evaluated with the help of an objective function. 

The formulation of objective function for history matching targets to minimize 

(lessen) the mismatch (discrepancy) between these field really production and 

simulated production data. Problem should have a minimum of two objective 

functions, to apply NSGA-II. However, a standard practice of using two identical 

objective functions is followed, to apply NSGA-II for this case [147]. The objective 

function for the case study targets to minimize the disparity between observed fluid 

production from Well-1 and simulator output and is expressed as below. 

                𝑄 = ∑ (
𝑑𝑘,𝑜𝑖𝑙

𝑂 −𝑑𝑘,𝑜𝑖𝑙
𝑆

𝑑𝑘,𝑜𝑖𝑙
𝑆 )

𝑊𝑒𝑙𝑙−1

2
32
𝑘=1 +  ∑ (

𝑑𝑘,𝑔𝑎𝑠
𝑂 −𝑑𝑘,𝑔𝑎𝑠

𝑆

𝑑𝑘,𝑔𝑎𝑠
𝑆 )

𝑊𝑒𝑙𝑙−1

2
32
𝑘=1                    (4.1) 

Here, d0 is the field observation and dS is the simulated (model) value in terms of 

quarterly oil and gas production rate & ‘k’ is these times periods that represent 32 

quarters (8 years) of production. 

The problem has 2000 variables, which are the values of permeability at 2000 

locations, of which, 100 values of permeability at predefined 100 locations are set 

back to their original values, making the problem has net 1900 variables. The lower 

bound of the permeability is set to 0.01 mD and the upper bound of the permeability 

is fixed as 1000 mD. The optimization problem has no constraints. 

4.2.3 Selection of GA Parameters 

For testing of NSGA-II, a synthetic 2-D black oil reservoir model is chosen. The 

standard genetic operators such as recombination, mutation and reproduction 

operators are employed. Tournament selection is employed as the selection or 

reproduction operator for choosing fittest members among the population and 

moved to the mating pool. Uniform k-point crossover is employed to carry out 

crossover operation in the chromosomes. The mutation in chromosomes is induced 

by uniform mutation operator to generate new populations. The studies are carried 

out with different sets of values of the crossover and mutation probabilities. The 

different sets of values of (Pc, Pm) used are (0.95, 0.02) and (0.98, 0.01). 
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4.2.4 Inputs to the CMG® Simulator 

The properties of the synthetic reservoir are given in Table 4.1 

Table 4.1: Properties of the Synthetic Reservoir 

Property Value 

Initial Reservoir pressure (MPa) 0.69 

Porosity  0.2 

Datum depth (m) 0.0 

Oil density (kg/m3) 700 

Gas density (kg/m3) 1 

Oil viscosity (cP) 1.0 

Gas viscosity (cP) 0.01 

 

4.2.5 Grid Selection of 2-D Reservoir 

A 2-D grid of dimensions 100 × 20 was imposed on the reservoir, which divides 

the entire reservoir into 2000 grid blocks (as shown in Fig. 4.3), each grid block 

spanning an area of 7.62 m × 7.62 m. The porosity was given to be constant 

throughout the reservoir. The exercise of History matching for this case is required 

to find out the values of permeability for all the grid blocks, with the given 

production history. Here, in the formulation of GA there are chromosomes whose 

length of the string is 2000 and each element in the string represents the 

permeability value of a grid block. Also, values of permeability at well locations 

(wells drilled vertically all over 20 layers, hence, for 100 grid blocks) are known 

and therefore should not change for each generation. A population size of 40 was 

chosen for the case study and therefore 40 initial realizations or ensembles were 

produced by application of conditional direct simulation in VISIM software.  

 4.2.6 Generation of Initial Population 

A population size of 40 initial realizations or ensembles for the 2D synthetic 

reservoir is generated using GSLIB’s VISIM. The simulation of these realizations 
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is conditioned to the well location and core hole data. Anisotropic variogram is used 

in generating these realizations. The initial 40 ensembles generated by VISIM is 

shown in Figure 4.4. One of them is shown vividly in Figure 4.5. 

Figure 4.4: Initial permeability ensembles (40 Nos.) of the 2-D synthetic reservoir 

Figure 4.5: Initial permeability ensemble of 2-D synthetic reservoir 
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4.3 RESULTS AND DISCUSSION 

NSGA-II is applied to the problem with population size of 40 and two different sets 

of values of (Pc, Pm), viz., (0.95, 0.02) and (0.98, 0.01) for 150 generations. Starting 

with the same initial population generated using VISIM, fluid production rates are 

calculated by the simulator and the objective function is evaluated. It is understood 

that better history-matched models are characterized with lower values of the 

objective function.  

The value of the fitness function of the initial realization calculated is Qmin = 2.5978. 

NSGA-II with (Pc, Pm) = (0.95, 0.02) produced the value of the objective function, 

Qmin = 0.5563 at the end of the 150th generation. NSGA-II with (Pc, Pm) = (0.98, 

0.01) produced the objective function as Qmin = 0.5097 at the end of the 150th 

generation. For both these cases, Figures 4.4a and 4.4b show the variation of the 

objective functions with the generation. Here, it is evident that the initial ensembles 

of permeability move towards the real map as the number of generations increase 

and that with (Pc, Pm) = (0.98, 0.01), a better history matched model is obtained. 

 

(a) 

 

(b) 

Figure 4.6: Improvement of the value of the objection function with generation 

number (a) (Pc, Pm) = (0.95, 0.02) (b) (Pc, Pm) = (0.98, 0.01) 

The best history matched model obtained from NSGA-II is compared with the 

measured values of oil and gas production. As evident from Figure 4.5, oil 
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production history matches quite well with observed values and the history match 

of gas production is quite reasonable. 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

 

Figure 4.7: NSGA-II: Final history match 

(a) Quarterly oils reproduction (m3/day), (b) Quarterly gases reproduction (m3/day) 

 

4.4 REMARKS 

For 2-D synthetic reservoir, history matching with the application of NSGA-II has 

been validated successfully. Similar to other variants of GA, NSGA-II has 

showcased its ability in producing history matches’ for gas and oil reproduction’ from 

Well-1. The study here is confined to history matching the production from only 

Well-1, even though there are 2 production wells in this case as the motive of this 

case study is validating the NSGA-II code for history matching. The history match 

obtained through NSGA-II showed as good a match as that offered by Chitra et al. 

(2010) using EnKF [103]. Hence, NSGA-II for history matching of reservoir is 

validated successfully. 
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CHAPTER 5 

HISTORY MATCHING USING NSGA-II:  

3-D REAL RESERVOIR 

In this research, an evolutionary optimization technique called Non-dominated 

Sorting Genetic Algorithm-II (NSGA-II), a variant of Genetic Algorithm (GA) that 

is applied for multi objective problems, is employed to solve the history matching 

problem. As we have validated the application of NSGA-II successfully for history 

matching a black oil model reservoir, the case study, taken from the literature [2], 

is also a black-oil model. As the total pressure drop is found to be less than 10% of 

the initial pressure over its entire production period of 10 years, it was sufficient to 

use black-oil model for flow simulation. The structural details and reservoir 

parameters are described in next section. 

5.1 CASE STUDY DESCRIPTION 

A real reservoir is chosen, for which nine years of production history is available. 

NNW-SSE is the direction of the field structure. On either sides, fault separates these 

structures from the adjoining lows. Faults surrounding these reservoir is non-

communicating. The field is composed of three layers of sandstone and there are 

six producing wells.  Reservoir pressure was initially recorded as 14.12 MPa at 

1397m. It was reported that there are two aquifers, one towards the N-W side and 

the other towards the narrowest region of reservoir in Layer-3. The field details of 

reservoir are tabulated in Table 5.1. 

The producer wells, W-3 & W-5, extend from layer 1 to layer 2 whereas wells W-

1, W-2, W-4 & W-6 extend from layer 2 to layer 3 (referred to as, for example, 
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well W-3 being perforated in layers 1 and 2). The schematic of these layers and 

well perforations are shown in Fig 5.1. 

Table 5.1 Field observations of the real reservoir 

Initial reservoir pressure (MPa) 14.12 at 1397 m. 

Quantity of reserved Oil in place (MMt) 2.47 

Cumulative Oil production till Sep’ 09 (MMt) 0.72 

 

(a) (b) (c) 

Figure 5.1: Schematic of the three layers and the six wells (extending over the 

three layers). (a) layer 1, (b) layer 2 and (c) layer 3 

The production in wells is occurring at pressures above bubble point pressure and 

hence gas to oil ratio (GOR) is in the range of 30-35 v/v. Hence the model shows 

constant producing GOR. Figure 5.2 shows the grid bottom structure of the 

reservoir. 

 

Figure 5.2: Grid bottom structure of real reservoir 
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Production has commenced through W-1 and W-2 from Feb’00 and Dec’ 00 

respectively and the initially recorded reservoir pressure at W-1 was 14.12 MPa at 

1385 m. The cumulative productions of oil, water and gas from W-1 till Sep’09 are 

0.156 MMt, 7.2 MMm3 and 8.1 MMm3 respectively. Subsequently, other wells 

were drilled and were allowed for hydrocarbon production in distinct years till 

2009. Two more wells (W-7 and W-8) were drilled and were put on production in 

Jan’ 09. However, production data of 70 months (from the period 2000 – 2005) was 

only used for history matching and the remaining production data was used for 

validating.  

Each of the three layers are divided into a computational grid, with each grid point 

being associated with a value of the porosity and permeability. Here, each layer is 

divided into a 2-D grid (in the directions of x and y), with ∆x = 100 m and ∆y = 100 

m. There are 50 grid blocks in the x direction and 60 grid blocks in the y direction. 

Every grid block is associated with a value of the porosity and a permeability. Thus, 

there are 3,000 values of each of these in each of the three layers, making it 9000 

values of each i.e. porosity and permeability. The permeability is given as 300 mD 

for layer 1 and given at well locations for other layers. The porosity is constant 

throughout a given layer i.e. 0.21, 0.22 and 0.23 for the layers 1, 2 and 3 

respectively. 

5.1.1 Optimization problem formulation 

The objective of this case study is to find the optimal permeability distribution in 

layers 2 and 3 that minimizes the discrepancy between the simulator predictions 

and actual observations. The objective function, similar to that formulated for 

synthetic reservoir case, is formulated considering the time period, field 

observations and number of wells. Here, these field data comprises of oil reproduction 

rate’, GOR’, water cut & BHP’ taken from all the six producers for 70 months of 

production history. Hence the objective function is expressed as 
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 (5.1) 

Here, Nw (= 6) is the number of wells, Nq (= 70) is the number of months, d0 is the 

field observation and dS is the corresponding simulated (model) value in terms of 

monthly oils reproduction rates (OIL), gas-oil ratio (GOR), watery cuts (WC) and bottom 

holes pressure (BHP). Value of the objective function ‘Q’ was a minimized’ using 

NSGA-II & searching was ended when the values of ‘Q’ was essentially same in 

successive iterations. 

The problem has 6000 variables, which are the values of permeability at 6000 

locations in 2 layers, of which, 14 values of permeability at predefined 14 locations 

are set back to their original values. The lower bound of the permeability is set to 

0.01 mD and the upper bound of the permeability is fixed as 1000 mD. The 

optimization problem has no constraints. 

5.1.2 Inputs to the CMG® Simulator 

Any reservoir a model is built by combining parameters viz. geological structure, 

petrophysical data, grid definition (type and size), properties of reservoir fluid, 

initial conditions, well completion data, P-V-T properties etc. The table below gives 

us the model parameters and PVT properties that are fed to CMG® Simulator to 

build the model. 

Table 5.2 Reservoir Model parameters and PVT properties 

Reservoir Temperature (K) 369.95  

Initial Reservoir Pressure (MPa) 14.12 

Datum depth (m) 1400 

Depth of water oil contact (m) 1397 – Layer 1; 1401 – Layer 2 

1402 – Layer 3 
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Bubble Point Pressure (MPa) 8.04 

Density of Oil (kg/m3) 850  

Viscosity of Oil (cP) 0.98  

Specific Gravity of Gas 0.95 

Gas-Oil Ratio in the Initial Solution 32 v/v 

Volume Factor of the Oil Formation  1.2 Reservoir barrels/stock tank barrel 

 

The relatively permeability information have been generated by applying Corey’s 

correlation’ within the simulator [148]. The porosity values and measured 

permeabilities at well locations are given in Table 5.3. The porosity is constant 

throughout a given layer i.e. 0.21, 0.22 and 0.23 for the layers 1, 2 and 3 

respectively. The permeability is given as 300 mD for layer 1 and given at well 

locations for other layers. The other data required for building the model are 

included in Appendix. 

Table 5.3 Values of the Porosity and Permeability of the Three Layers 

Layer Porosity throughout 

the layer 

Permeability at a location 

Location (x, y) (m) mD (x 1000 µm2) 

Layer 1 0.21 Throughout the layer 300 

Layer 2 0.22 (2020.866, 5101.895) 533.2 

(2516.858, 4935.464) 732.7 

(2181.874, 4702.655) 412.7 

(1764.404, 4607.200) 394.1 

(2569.139, 4357.980) 329.7 

(2468.298, 3735.591) 420.0 

(2793.034, 3191.109) 446.8 

(2915.995, 2620.678) 446.7 
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Layer 3 0.23 (2025.845, 5091.209) 533.2 

(2511.532, 4924.293) 732.7 

(2181.381, 4692.627) 412.7 

(1767.349, 4603.087) 394.1 

(2564.105, 4350.277) 329.7 

(2790.579, 3187.187) 446.8 

 

5.1.3 Grid Selection of Real Reservoir 

The CMG simulator generally uses 50m x 50m sized block grid on the reservoir. 

This will result in 36000 grid blocks (100 x 120 x 3) for the present case study. 

However, a grid of coarse scale was utilized, in the present case study, to limit the 

dimensionality’ of GA variables, resulting in 9000 (50 x 60 x 3) grid blocks. As 

mentioned earlier, each grid block is associated with the values of porosity and 

permeability. Since the porosity values are known for all the layers and the 

permeability values are known for first layer alone, the objective of this study aims 

at estimating the permeability distributions in layers 2 and 3. This necessitates to 

estimate 5986 values of permeability disregarding the already known 14 values of 

permeabilities in layers 2 and 3. An attempt was also made to reduce the no. of 

variables by non-linear interpolation through SGSIM. Methodology and results of 

both the above cases - case (a) and case (b), with 5986 variables and with reduced 

no. of variables respectively, are described below.  

5.1.4 Generation of Initial Population 

In this case, initially population’ was regenerated with the help of mGstat, a 

geostatistical toolbox’ from MATLAB®, that has interfaced’ to the SGeMS. The 

initial ensembles/realizations were generated by employing the Sequential 

Gaussian Simulation (SGSIM) which obey the histogram and spatially variations of 

these real reservoirs. SGSIM determine every distributions of petrophysical properties 

under multivariate Gaussian model. Each grid block permeability in the ensembles 

were estimated using a Gaussian variogram model with a sill value 1 and correlation 
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range of 20’ grid blocks. With the chosen population size as 30, a set of 30 initial 

ensembles were generated using SGSIM which honor the values of permeability at 

well locations. Case (a) involves generation of 6000 variables per realization. The 

dimensionality of the problem can reduced by using a network of pilot points and 

geo-statistical interpolation methods [149]. Following the same, the number of 

variables are reduced for Case (b). Out of 6,000 points in layers 2 and 3, forty pilot 

locations are chosen. Of these forty, fourteen are at the positions of well locations 

given in Table 5.3 and the remaining 26 locations (13 in each layer) are chosen 

randomly, which are spread over the reservoir and whose locations are given in 

Table 5.4. Hence, the problem is now reduced to estimating 26 permeabilities. The 

initial population values of the permeabilities at these 26 locations are chosen by 

the NSGA-II code and the remaining 5,960 values are determined by interpolation 

through SGSIM. 

Table 5.4 Locations (x, y, in m) of the pilot points 

Layer 2 Layer 3 

(100, 600) (100, 400) 

(500, 900) (500, 700) 

(800, 600) (600, 800) 

(900, 1000) (1200, 1100) 

(1200, 1000) (1600, 1500) 

(1200, 1100) (1600, 3600) 

(1500, 1400) (1900, 2000) 

(1600, 1800) (2400, 2300) 

(2900, 2600) (2500, 4100) 

(3800, 5800) (3200, 500) 

(4000, 2000) (3400, 3600) 

(4400, 4600) (4600, 4800) 

(4700, 5800) (4800, 5700) 
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5.2 RESULTS AND DISCUSSION 

5.2.1 Results for Case (a) 

NSGA-II is applied to the problem of 6000 variables and population size 30 with 

three different sets of values of (Pc, Pm) viz. (0.95, 0.02), (0.98, 0.01) and (0.99, 

0.005) for 150 number of generations. Starting with the same initial population, 

fluid production rates are calculated by the simulator and objective function is 

evaluated. Values of objective function for the initial ensembles for both the sets of 

(Pc, Pm) are equal as chosen initial population is same and are given in Table 5.5. 

The minimum, maximum and mean objective function values were found to be 

1022.39, 1175.23 and 1115.53 respectively. The observed values viz. oil production 

rate, water cut, GOR and BHP are plotted against the simulator output values in 

figure 5.3. It is evident that first generation simulator output values of oil production 

rate and GOR shows a reasonably good match with those of the observed field 

values but water cut and BHP shows significant variations. 

Table 5.5 Values of Objective function (Q) for 30 initial ensembles for Case (a) 

Ensemble No. Q Ensemble No. Q 

1 1148.08 16 1119.32 

2 1175.23 17 1072.69 

3 1116.04 18 1110.35 

4 1090.09 19 1106.19 

5 1083.68 20 1113.33 

6 1128.55 21 1062.67 

7 1105.83 22 1143.14 

8 1150.94 23 1135.25 

9 1134.52 24 1144.29 

10 1122.23 25 1119.41 

11 1132.88 26 1123.46 

12 1149.12 27 1119.48 

13 1093.68 28 1098.69 

14 1088.57 29 1115.96 

15 1139.69 30 1022.39 
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Figure 5.3 Case (a) - Comparison of simulator output of best initial ensemble 

(before optimization) with observed field values for (a) Oil’rate (b) Watery cuts (co) 

GOR and (do) BHP 
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The variation of ‘Q’ with generation for the three sets of values of (Pc, Pm) viz. 

(0.95, 0.02), (0.98, 0.01) and (0.99, 0.005) is given in figure 5.4. The NSGA-II 

search was terminated after 150 generations that resulted in Qmin = 208.68, 241.29 

and 214.61 for (Pc, Pm) = (0.95, 0.02), (0.98, 0.01) and (0.99, 0.005) respectively. 

The better convergence of Q is obtained for (Pc, Pm) = (0.95, 0.02) and hence the 

permeability distribution corresponding to (Pc, Pm) = (0.95, 0.02) is used to evaluate 

the production. The value of Qmin varied from 1022.38 to 208.68 after 150 

generations. The significance of this variation can be seen when simulator output 

values of water cut and BHP after 150 generations is compared with the actual 

production values and initial generation simulator output values. 

 

Figure 5.4: Variation of objective function ‘Qmin’ with generations for (Pc, Pm) = 

(0.95, 0.02), (0.98, 0.01) and (0.99, 0.005) for case (a) 

From the figure 5.5 (b) and (d) given below, it is evident that the water cut and BHP 

matched better to field data except for the initial higher GOR. Oil production rate’ 

and gas-oil ratio continues to show good match upto 150 iterations, as clear from 

figure 5.5 (a) and (c). 
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Figure 5.5 Case (a) - Comparison of simulator output of best final ensemble (after 

optimization) with observed field values and best initial ensemble (before 

optimization) for (a) Oily’ rate (be) Watery cuts (c’) GORS and (doo) BHP’ 
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5.2.2 Results for Case (b) 

As mentioned earlier, of 40 pilot locations chosen, 14 are the well locations whose 

permeability data is known and 26 others are chosen randomly, well spread over 

the reservoir. NSGA-II is applied to the problem of 26 variables and population 

size 30, with two different sets of values of (Pc, Pm) viz. (0.95, 0.02), (0.98, 0.01) 

and (0.99, 0.005) for 150 number of generations. SGSIM is used to interpolate the 

permeability of all the other grid blocks from the permeability values of these 40 

pilot locations. Starting with the same initial population, fluid production rates are 

calculated by the simulator and objective function is evaluated. Objective function 

values of the initial ensembles for both the sets of (Pc, Pm) are given in Table 5.6. 

The minimum, maximum and mean objective function values were found to be 

612.40, 2418.22 and 1357.13 respectively.  

Table 5.6 Values of Objective function (Q) for 30 initial ensembles for Case (b) 

Ensemble 

No. 
Q 

Ensemble 

No. 
Q 

1 1330.54 16 2012.51 

2 1145.84 17 1355.03 

3 1237.65 18 1436.19 

4 999.19 19 943.45 

5 1041.03 20 1886.42 

6 1552.55 21 1799.45 

7 2161.80 22 646.82 

8 1499.65 23 1393.34 

9 1493.53 24 726.58 

10 2418.22 25 1426.20 

11 1128.43 26 1814.36 

12 612.40 27 1336.15 

13 1247.54 28 714.83 

14 1464.57 29 1169.28 

15 1483.83 30 1242.09 
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The variation of ‘Qmin’ with generation is given in figure 5.6 below. The NSGA-II 

search was terminated after 150 generations that resulted in Qmin = 328.20, 334.55 

and 329.89 for (Pc, Pm) = (0.95, 0.02), (0.98, 0.01) and (0.99, 0.005) respectively.  

 

Figure 5.6: Variation of objective function ‘Qmin’ with generations for (Pc, Pm) = 

(0.95, 0.02), (0.98, 0.01) and (0.99, 0.005) for case (b) 

5.2.3 Analysis of Results 

In comparison to the case (a), Qmin started with a lower value (612.40 vs 1022.39). 

But, with every generation, the variation of Qmin was lower and finally it reached 

328.20 (against 208.68 of case (a)). Hence, we can say that the reservoir model with 

permeability distribution obtained in case (a) with (Pc, Pm) = (0.95, 0.02) is a better 

one. However, parametric studies were carried out for the best case, by increasing 

and decreasing mutation/crossover probability keeping the other constant. The 

values of (Pc, Pm) chosen for the parametric studies are (0.95, 0.01), (0.95, 0.03), 

(0.94, 0.02) and (0.96, 0.02). The simulations were carried out and objective 

function ‘Qmin’ obtained were 220.22, 224.15, 219.38 and 211.65 respectively for 

the chosen (Pc, Pm). Of all the cases of (Pc, Pm) chosen, it is clear that the least value 

of objective function ‘Qmin’ was obtained for (Pc, Pm) = (0.95, 0.02), as evident from 

figure 5.7. 
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Figure 5.7: Parametric studies 

Hence, the obtained permeability distribution was fed to the simulator for history 

matching and predict the reservoir performance.  However, it may be noted that the 

higher values of gas-oil ratio (GOR) in the initial few months cannot be forecast 
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permeability distribution obtained in case (a) with (Pc, Pm) = (0.95, 0.02) is used to 

predict the performance of the reservoir.  

 

(a) 

 

(b

)  

 

(c) 

 

0

50

100

150

200

250

300

350

Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09

O
il 

R
at

e 
(m

3 /
d

)

Time

Actual Prediction

History Matching Future Prediction

0

20

40

60

80

100

Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09

G
as

-O
il 

R
at

io

Time

Actual Prediction

History Matching Future Prediction

0

10

20

30

40

50

60

70

80

Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09

W
at

er
 c

u
t

Time

Actual

Prediction

History Matching Future Prediction



76 
 

(d) 

 

Figure 5.8: Comparison of predictions from the model with the field observations 

(a) Oily rates (be) GORs (co) Watery cuts and (do) BHP 

  

Well-1. (a) Well-1. (b) 

 

Well-1. (c) 

Figure 5.9 : Comparison of predictions from the model with the field observations for Well 

– 1 (a) Oil rate (b) GOR (c) Water cut 
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Well-2. (a) Well-2. (b) 

 

Well-2. (c) 

Figure 5.10: Comparison of predictions from the model with the field observations for 

Well – 2 (a) Oil rate (b) GOR (c) Water cut 

  

Well-3. (a) Well-3. (b) 

 

Well-3. (c) 

Figure 5.11: Comparison of predictions from the model with the field observations for 

Well – 3 (a) Oil rate (b) GOR (c) Water cut 
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Well-4. (a) Well-4. (b) 

 

Well-4. (c) 

Figure 5.12: Comparison of predictions from the model with the field observations for 

Well – 4 (a) Oil rate (b) GOR (c) Water cut 

  

Well-5. (a) Well-5. (b) 

 

Well-5. (c) 

Figure 5.13: Comparison of predictions from the model with the field observations for 

Well – 5 (a) Oil rate (b) GOR (c) Water cut 
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Well-6. (a) Well-6. (b) 

 

Well-6. (c) 

Figure 5.14: Comparison of predictions from the model with the field observations 

Well – 6 (a) Oil rate (b) GOR (c) Water cut 

It is evident from the figure 5.8 (a) – (d) that the reservoir model generated predicts 

the reservoir performance to a good extent, though not accurate. Figures 5.9 – 5.14 

show a match between production data and model predictions for individual wells 

for the time duration 2000 to 2008. The reservoir model is able to predict water cut, 

BHP and GOR well. The oil production rate continues to be matching exactly with 

the field observations. Thus, it can be affirmed that NSGA-II generated 

permeability distribution is indeed realistic and hence, the reservoir model 

developed is capable of future prediction.  
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

This chapter discusses the contribution from the present work, the extent of success 

achieved from the developed methodology for history matching and predicting the 

reservoir performance. A few recommendations for further research directions have 

also been included. 

6.1 CONCLUSIONS 

NSGA-II has shown its capability as ant capable tool of optimization that assists in t 

automated’ history matching, evident from its successful application in realizing a 

representative permeability’ map for 2-D synthetics reservoir’. For these synthetic 

reservoir, results obtained by application of NSGA-II were in comparison with 

those results that were testified earlier bye me Chitralekha et al. (2010), using EnKF 

[103]. After validating the methodology, NSGA-II was applied to a real reservoir 

of grid block size 100 m × 100 m and history matching was performed. In first case, 

the number of variables was large, as each and every unknown permeability value, 

associated to a grid block, has been chosen as a variable. These variables were 

optimized using NSGA-II and objective function was evaluated. 

In second case, the number of variables was reduced (keeping the grid block size 

same i.e.100 m × 100 m) by employing a network of pilot points along with SGSIM 

for non-linear interpolation. Permeability values at a set of pilot points, randomly 

spread throughout the reservoir, were chosen as variables. These variables were 

optimized using NSGA-II and the permeability values of neighboring grid blocks 

was calculated using SGSIM and objective function was evaluated. Though the 

values of objective function for both the cases are comparable, better fitness values 

were obtained with the technique NSGA-II, with better match for bottom hole 
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pressure flowing pressure (BHP), gas-oil ratio (GOR), oil production rate and a 

reasonable match for watercut (WC). The mismatches could not be attributed to 

any specific reason, which might have occurred due to unusual events. The coarse 

grid size of 100m × 100 m may also have contributed to errors. Though the number 

of variables is reduced, run time of NSGA-II + SGSIM is found to be approximately 

10% more than that of NSGA-II. This is due to the non-linear interpolation function 

being called upon every time, to generate the distribution map. However, the 

permeability distribution map that would have been obtained from NSGA-II + 

SGSIM, would be smooth and more realistic, as there shall be no abrupt 

increment/decrement in the permeability values of neighboring grid blocks. 

Nevertheless, abrupt increase/decrease in the values of permeability of neighboring 

grid blocks may be justified in this case, as the grid size chosen was coarse. 

Successful application of NSGA-II to obtain history matching of oil, gas and water 

and satisfactory future predictions establishes the efficiency of the technique to 

predict the reservoir performance and hence optimize the production. 

6.2 RECOMMENDATIONS 

 In this study, history matching using NSGA-II was attempted only with 

permeability. The methodology can be extended to include other critical 

parameter viz. porosity to enhance the efficiency of the history match. 

 The present study is based on a simple 3-D black oil reservoir with 6 wells 

which could be extended to a complex reservoir with large number of wells. 

 The coarse grid block size chosen in the current study may have introduced 

random error by improper accounting of spatial variations in rock 

properties. Accordingly, smaller grid block size can be chosen to get 

accurate model, with better configuration computers. 

 In this study, history matching is based on a single objective that takes sum 

of square errors (SSE) of oil production rate, GOR, WC and BHP into 

consideration. Further studies can be carried out by multi-objective 
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matching which provide an increased diversity of matched model that 

results in improved forecasting. 

 Reservoirs are heterogeneous and difficult to predict away from wells. Well 

data and seismic data have incomplete coverage and finite resolution and 

result in uncertainties. Further studies need developing reliable reservoir 

models handling these uncertainties. 
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 APPENDICES  

 

APPENDIX – A: Source code of NSGA-II for history matching 

Available with authors 

APPENDIX – B: Data Used for Modeling of Real Reservoir 

This section presents the relative permeability data used for real field modeling and 

the field historic data such as fluid production rate and bottom hole flowing pressure 

(BHP) used to compare the reservoir simulator response. 

1. Relative Permeability Data 

Layer 1 Layer 2 Layer 3 

Total Water Saturation 

(SWT) 

Total Water Saturation 

(SWT) 

Total Water Saturation 

(SWT) 

Sw 0.39 Sw 0.47 Sw 0.45 

Soirw 0.24 Soirw 0.21 Soirw 0.22 

Kro 0.984 Kro 0.984 Kro 0.984 

Krw 0.084 Krw 0.051 Krw 0.061 

Total Liquid Saturation 

(SLT) 

Total Liquid Saturation 

(SLT) 

Total Liquid Saturation 

(SLT) 

Sgc 0.01   Sgc 0.03   Sgc 0.05   

Krog 0.984   Krog 0.984   Krog 0.984   

Krg 0.776 at 

Swc+Soir 

Krg 0.669 at 

Swc+Soir 

Krg 0.698 at 

Swc+Soir 
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2. Production history of the reservoir 

Date 

(m/d/y) 

Oil 

(m3/day) 

Gas 

(m3/day) 

Water 

(m3/day) 

Date 

(m/d/y) 

Oil 

(m3/day) 

Gas 

(m3/day) 

Water 

(m3/day) 

3/1/2000 62.150 0.000 1.569 4/1/2003 188.965 6969.000 53.599 

4/1/2000 107.442 0.000 1.468 5/1/2003 194.626 6789.000 71.417 

5/1/2000 111.597 9966.933 0.000 6/1/2003 179.186 6260.742 42.571 

6/1/2000 108.435 9684.742 0.000 7/1/2003 176.900 6191.500 57.617 

7/1/2000 109.557 9782.033 0.000 8/1/2003 183.814 6433.484 54.574 

8/1/2000 108.506 9690.065 0.000 9/1/2003 181.586 6355.484 55.933 

9/1/2000 103.887 9275.935 0.000 10/1/2003 189.578 6635.133 56.066 

10/1/2000 108.773 9711.833 0.000 11/1/2003 206.843 7239.548 45.651 

11/1/2000 108.149 9655.903 0.000 12/1/2003 220.351 7712.533 57.203 

12/1/2000 110.889 9899.400 0.000 1/1/2004 216.119 7564.323 62.541 

1/1/2001 133.642 8830.903 0.000 2/1/2004 250.824 8778.871 95.204 

2/1/2001 180.365 7628.903 0.000 3/1/2004 296.624 7267.276 108.429 

3/1/2001 211.499 7699.857 0.000 4/1/2004 283.882 6728.677 106.816 

4/1/2001 191.275 7146.516 0.000 5/1/2004 265.315 6359.967 126.685 

5/1/2001 193.902 7250.767 0.000 6/1/2004 255.698 6132.484 121.604 

6/1/2001 191.049 7153.516 0.000 7/1/2004 243.967 5879.233 128.468 

7/1/2001 187.749 7008.733 0.000 8/1/2004 233.499 5603.968 125.461 

8/1/2001 188.677 7053.613 0.000 9/1/2004 228.186 5702.032 124.525 

9/1/2001 185.097 6973.935 4.636 10/1/2004 233.580 6381.667 126.972 

10/1/2001 173.889 6933.100 9.297 11/1/2004 242.384 6589.968 131.526 

11/1/2001 178.851 6646.355 8.706 12/1/2004 253.107 6915.033 132.418 

12/1/2001 176.982 6556.400 12.841 1/1/2005 233.179 6344.097 105.199 

1/1/2002 178.487 6572.581 23.011 2/1/2005 229.004 6467.097 104.345 

2/1/2002 171.804 6312.742 23.059 3/1/2005 232.115 6820.250 123.619 

3/1/2002 175.783 6511.821 14.648 4/1/2005 222.603 6505.290 115.333 

4/1/2002 129.809 4806.065 6.850 5/1/2005 217.207 6471.300 90.015 

5/1/2002 171.152 6387.833 5.598 6/1/2005 214.531 6342.839 51.242 

6/1/2002 174.970 6525.484 11.307 7/1/2005 229.553 6812.200 91.841 

7/1/2002 169.451 6316.633 20.667 8/1/2005 165.925 4919.581 93.168 

8/1/2002 149.668 5685.323 31.936 9/1/2005 201.852 5990.935 120.797 

9/1/2002 179.549 7082.774 49.655 10/1/2005 212.351 6285.233 154.727 

10/1/2002 216.430 8163.567 57.440 11/1/2005 191.695 5615.452 138.519 

11/1/2002 229.096 8401.839 47.586 12/1/2005 180.717 5498.933 114.775 

12/1/2002 225.021 9037.600 49.013 1/1/2006 185.979 6230.581 110.793 

1/1/2003 217.920 8687.323 52.512 2/1/2006 204.586 7043.968 108.780 

2/1/2003 212.094 8240.194 82.270 3/1/2006 209.230 6782.321 140.979 

3/1/2003 188.402 6996.464 102.113 4/1/2006 234.786 6933.290 134.350 
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Date 

(m/d/y) 

Oil 

(m3/day) 

Gas 

(m3/day) 

Water 

(m3/day) 

Date 

(m/d/y) 

Oil 

(m3/day) 

Gas 

(m3/day) 

Water 

(m3/day) 

5/1/2006 228.956 6711.367 142.127 10/1/2007 241.322 7280.033 157.591 

6/1/2006 191.814 5838.323 134.106 11/1/2007 233.869 7057.161 131.802 

7/1/2006 189.097 5947.500 132.649 12/1/2007 232.301 7008.533 110.749 

8/1/2006 184.060 5621.806 110.957 1/1/2008 232.835 7018.484 110.377 

9/1/2006 0.000 0.000 0.000 2/1/2008 228.755 6920.194 112.445 

10/1/2006 135.952 4126.067 115.480 3/1/2008 215.960 6947.172 120.806 

11/1/2006 218.896 6670.161 128.454 4/1/2008 217.335 7030.613 110.861 

12/1/2006 230.890 6989.067 124.959 5/1/2008 233.520 7033.433 101.516 

1/1/2007 215.210 6410.452 131.966 6/1/2008 228.715 6943.226 96.645 

2/1/2007 162.644 4923.677 100.823 7/1/2008 242.173 7516.133 98.878 

3/1/2007 237.711 6913.250 115.706 8/1/2008 261.729 8069.484 96.208 

4/1/2007 278.696 7684.387 114.911 9/1/2008 259.152 7905.290 91.054 

5/1/2007 268.754 7282.333 123.534 10/1/2008 252.880 7506.833 85.908 

6/1/2007 263.666 6938.742 119.886 11/1/2008 269.159 7752.161 85.669 

7/1/2007 253.401 7027.767 139.545 12/1/2008 257.732 7665.133 82.308 

8/1/2007 97.228 2908.000 60.218 1/1/2009 254.287 7600.097 120.242 

9/1/2007 240.976 7242.032 135.956     

 

Pressure field History of Reservoir 

Date BHP 

(kg/cm2) 

Date BHP 

(kg/cm2) 

Date BHP 

(kg/cm2) 

21/2/2000 143.87 31/12/2003 138.61 21/12/2005 132.53 

29/5/2000 141.66 6/1/2004 137.56 16/2/2006 138.05 

3/8/2000 142.04 4/2/2004 140.55 21/9/2006 136.37 

11/1/2001 141.3 16/4/2004 137.13 22/2/2007 136.27 

8/3/2001 142.28 5/7/2004 134.41 28/3/2007 136.17 

27/9/2001 142.0 6/8/2004 114.19 30/7/2007 88.97 

6/3/2002 142.48 2/9/2004 137.12 14/8/2007 137.45 

17/8/2002 140.77 2/10/2004 138.23 20/3/2008 142.12 

19/9/2002 140.96 17/1/2005 136.06 24/5/2008 132.09 

9/10/2002 141.58 17/3/2005 136.08 18/6/2008 132.2 

19/12/2002 137.30 18/5/2005 136.08 19/11/2008 135.76 

21/2/2003 134.29 2/6/2005 134.66 10/12/2008 136.1 

13/3/2003 139.19 19/7/2005 136.58   

2/6/2003 137.69 23/8/2005 138.23   

18/7/2003 139.11 15/9/2005 135.18   
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