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ABSTRACT 

In this day and age, X-rays are the principal instruments for assessing suspected 

fractures in humans. It takes significant time and requires experienced 

radiologists or trained orthopedic surgeons to examine X-ray images manually. 

Inability to diagnose and treatment delays owing to unnecessary referrals by 

primary care clinicians are induced by the excessive workload and shortage of 

radiologists in small settings and primary/community health centers. 

Furthermore, the lack of qualified radiologists and orthopedic surgeons in 

medically underserved regions, such as rural India, has driven us to create an 

automated fracture detection model. We have constructed a deep neural network 

to detect, localize, and segment the wrist region to find fractures near the wrist 

joint in radiographs. The orthopedic surgeon manually constructed a bounding 

box and segmented mask to annotate the fractures. We employed datasets from 

two separate domains to ensure that the model converges more quickly. 

Wrist Fracture Dataset (WFD) and Surface Crack Dataset (SCD) have been 

created and annotated.  The WFD was obtained from the Doon Hospital in 

Dehradun, India, between February 2019 and March 2020. The number of wrist 

fracture images obtained from the hospitals is 315 consisting of 733 

annotations/cracks which is insufficient to generate accurate results using deep 

learning techniques. Therefore we have incorporated state-of-the-art COCO and 

self-collected Surface Crack Datasets (SCD) for better model generalization. 

COCO dataset does not include images from medical domain, more specifically 

there are no images which has crack like pattern in it. As a consequence, we 

have developed surface crack dataset. The surface crack dataset consists of 

3,000 images collected by capturing the minute cracks, which has similar 

patterns as the bone fracture cracks. SCD consists of pictures taken from walls, 

pavements, and roads, created using a mobile camera. To overcome the 

obstacles in data collecting and labeling in diagnosing wrist fractures, a subset 

of the dataset is made freely accessible for research.  
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The suggested architecture substitutes the last-level max pool layer of the 

architecture with a concatenation of ACP AdaptiveConcatPool (ACP), 

AdaptiveAvgPool (AAP), and AdaptiveMaxPool (AMP) layers utilizing 

Feature Pyramid Network (FPN) as the backbone architecture. For improved 

model convergence, the notion of freezing and unfreezing the network is applied 

during the transfer learning cycles. Each radiograph is assigned a ground truth 

label to test the model's correctness. The principle of Intersection over Union 

(IoU) is utilized to evaluate the performance measure for fracture detection and 

localization using the Average Precision (AP) value. The output of the 

suggested model is contrasted with the radiologists' annotated ground truth label 

and results from related investigations. For fracture detection, an average 

precision of 92.278% on a scale of 500 and 79.003% on a strict scale of 750 was 

reported. For fracture segmentation, an average precision of 77.445% on a scale 

of 500 and 52.156 on a strict scale of 750 was reported. 
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CHAPTER-1 

1 INTRODUCTION  

This chapter begins with a motivation for our study, followed by a description 

of the research difficulties and a summary of the contributions made by this 

thesis. Finally, we conclude this chapter with a thesis outline. 

1.1 Motivations 

An incomplete or full break in the bone is known as a fracture. The primary 

cause of fracture is high impact or force applied to a bone that is structurally 

capable of withstanding. Traumatic and stress are commonly found bone 

fractures in the human body. Stress fractures are common among sports (such 

as gymnasts, dancers, and long-distance runners) and military people and are 

caused by repetitive load-carrying strain on a healthy bone [1]. Traumatic 

fractures are caused by vehicle accidents, serious falls, or purposeful causes 

such as physical abuse. A fracture can also happen for several other reasons, 

such as osteoporosis (a disease that weakens bones), cancer, or the brittle bone 

condition known as ontogenesis imperfect. According to the World Health 

Organization (WHO) report, 1.66 million people suffer from hip fractures every 

year throughout the world, and the rate is expected to rise by three to four times 

by the year 2050 because of the worldwide increase in the number of older 

people [1]. All bone fractures are divided into seven major categories [2] that 

are depicted using Figure 1.1. 

 

Figure 1.1 The primary bone fracture types- Transverse, oblique, spiral, comminuted, 

greenstick, and impact fractures are listed in alphabetical order from A to F [2]. 
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A. Transverse Fracture: It is the simplest type of fracture where the bone is 

broken as a horizontal line. 

B. Oblique Fracture: It is a fracture type where the break extends in a slanting 

direction, caused by indirect or rotational force. 

C. Spiral Fracture: It is a fracture type where the break spirals around the bone, 

common in a twisting injury. 

D. Comminuted Fracture: It is a fracture type where the bone breaks into 

several pieces. 

E. Greenstick Fracture: It is an incomplete fracture type where the broken 

bone is not completely separated. 

F. Impacted Fracture: It is a fracture type where the bone breaks, but the two 

ends of the fractured bone are forced together. It produces a rather stable 

fracture that can heal readily but at the cost of some length lost. 

X-rays, Magnetic Resonance Imaging (MRI), and Computed Tomography (CT) 

are various medical imaging modalities used to capture images of the affected 

body area. A radiology specialist interprets these recorded images to make a 

medical diagnosis and then recommends therapy. The oldest, quickest, and most 

popular imaging technique is an X-ray, which analyses potential fractures by 

taking pictures of the body's interior organs [3]. It has emerged as the go-to 

analytical tool for examining patients for fractures because it is widely 

accessible in locations where other, more expensive imaging modalities would 

not be. Radiologists or physicians use visual inspection to evaluate X-ray 

samples to determine the existence and type of fractures in different bones. To 

acquire a more detailed, cross-sectional image of the bone that may be missed 

during an X-ray examination, the need for advanced imaging technologies such 

as MRI and CT scans emerges [3].  

The manual examination and categorization of fractures involved in 

radiographic image interpretation take a lot of time and effort. False detection 

rates and poor fracture healing could be caused by a shortage of doctors in 
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medically underserved areas, a shortage of experienced radiologists in 

overloaded clinical settings, and weariness from excessive workloads. 

Additionally, because rarely a second examiner is present, the chance of 

incorrect identification due to incomplete interpretation of the X-ray image is 

increased. A fracture diagnosis error resulting from incorrect fracture 

identification was described in 41% to 80% of instances [4-5]. The examiner's 

ability to detect anomalies may be greatly diminished due to weariness brought 

on by analyzing numerous musculoskeletal pictures, according to many studies 

[6–8]. Computer vision systems may be a potential answer to such issues if they 

can swiftly offer a reliable second opinion in identifying questionable fracture 

instances. 

1.2 Problem Descriptions 

In the past, numerous low-level pixel-processing methods for predicting human 

bone fractures, including noise reduction, segmentation, and feature extraction, 

were used [9]. Before extracting characteristics from the image, obtaining the 

region of interest was relatively common by separating bone regions from 

fleshy portions. Several aspects from the image were retrieved and provided to 

the classifier to forecast the occurrence of fractures, including textual, shape, 

edges, horizontal, and vertical lines. However, several deep learning techniques 

have since superseded this strategy.  

Artificial intelligence is a subfield of computer science that develops computer 

systems that can simulate human intellect. This word is made up of the phrases 

"Artificial" and "Intelligence," which signify "a thinking ability developed by 

humans." Machine learning is a branch of artificial intelligence in which 

computers learn from historical experiences or information without being 

explicitly programmed. Deep learning, one of artificial intelligence's fastest-

growing sub-fields, has achieved great success in medical imaging by offering 

greater accuracy than other methods [10]. Convolutional Neural Networks 

(CNN), which have fully linked, sub-sampling, and convolution layers, are 
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types of deep learning architecture [10]. Since the creation of the CNN model, 

which can "learn the features" rather than manually programming them into the 

system, feature extraction approaches have undergone a significant 

transformation. While the fully connected layer is utilized for classification, 

CNN's convolution and subsampling layers are used for feature learning. These 

architectures have been quite successful since the model can learn features 

independently rather than manually adding them to the system. In order to 

improve patient care, Computer-Aided Design (CAD) systems can help medical 

professionals by recommending the type of treatment necessary for disease 

diagnosis [11]. When combined with X-ray machine software, a fracture 

diagnosis system might speed up the examination procedure by producing the 

best findings. 

Research studies on the subject of fracture detection demonstrate that there have 

been significant increase in computer vision-based crack detection systems over 

the past ten years. However, there are a few obstacles in this field, and these 

challenges drive the investigation in this thesis. 

Conventional image processing approaches in fracture identification struggle 

with image non-uniformity and variable lighting conditions [9]. Large bone 

fracture datasets with reliable ground truth labels are scarce for building and 

testing detection algorithms, particularly deep neural network-based models. 

The existing research articles focus on fracture detection and its localization 

using deep neural network architectures pre-trained on state-of-the-art non-

medical datasets.  

Fracture detection has incorporated traditional machine learning techniques like 

the Nearest Neighbor (NN) [12] and Support Vector Machines (SVM) [13]. 

Implementing such algorithms in fracture detection should provide a quantized 

visual representation that describes the crack that must be classified. Depending 

on handcrafted crack features, such algorithms benefit from a limited amount of 

images for learning. Therefore, establishing a reliable method for feature 

extraction, such as morphological operations and edge/line detection, is a vital 
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step in traditional machine learning-based systems [14]. More sophisticated 

techniques include wavelet-based texture extraction methods. The established 

techniques for machine learning are simple to comprehend and diagnose. 

However, a fundamental issue with these models is that they are limited to 

generalizing since they require robust fracture features, which are challenging 

to achieve when dealing with a wide variety of real-world settings. 

Deep convolutional neural network-based techniques have excelled in fracture 

detection methods over the past ten years [23-30]. These models do not need 

pre-defined, manually created features because they can learn highly 

complicated fracture characteristics straight from the raw images. However, 

deep learning-based approaches encounter two major difficulties.  

First, they require sizable datasets with sparsely available ground truth 

annotations. This has significantly hampered any worthwhile research in this 

area. A deep network can be trained to detect and locate the cracks by being 

given a large bone fracture dataset. 

Second, the research articles primarily focus on fracture detection and 

localization using pre-trained deep neural networks on non-medical datasets. 

Merely providing annotations in the form of a bounding box surrounding the 

crack does not somehow help to visualize its shape. If a fracture expanded 

horizontally or vertically has irregular shapes, then a bounding box would 

involve extraneous bone regions while the model is trained. Consequently, each 

image is annotated by drawing a more complex shape around the fracture, such 

as a polygon.  

Instance segmentation, which integrates faster-RCNN (Region-based 

Convolutional Neural Network) and semantic segmentation, can be employed 

to overcome the abovementioned issues.  Considering this, the following set of 

objectives have been drafted. 
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1.3 Objectives 

Analysis and design of bone fracture localization and segmentation model for 

assisting radiologist in accurately detecting wrist fractures.  

Sub-Objectives   

1. To collect bone X-ray images, perform data labeling, data 

preprocessing, and dataset splitting into train, validation and test set. 

2. To propose a model which classifies fracture into binary class (Healthy 

and Fracture). 

3. To extend the model for localization and segmentation of suspected 

fractures in wrist bone and analyzing performance thereof. 

1.4 Contribution of the Thesis 

The general goal of this thesis is to propose an accurate fracture detection and 

segmentation model for wrist bone fractures from X-ray images. The research 

contribution is summarized below. 

To begin, we propose two new datasets: the Wrist Fracture Dataset (WFD) and 

the Surface Crack dataset (SCD). 

WFD consists of wrist bone X-ray images collected from the Government Doon 

Medical Hospital in Dehradun, India, between February 2019 and March 2020. 

SCD comprises photographs taken from walls, pavements, and roads with a 

mobile camera. We included a surface crack dataset with crack patterns similar 

to wrist bone fractures. SCD and WFD are both preprocessed before being fed 

into the network. Following that, the images go through a labeling and 

augmentation process. All of the images in our datasets were labeled manually, 

taking longer but less error-prone than the automatic annotation software. To 

avoid data collection challenges and wrist fracture labeling, a portion of the 

dataset is made publicly available for research. 

Second, we demonstrate a novel fracture localization and segmentation model 

of three sub-architectures: the Backbone network, the Region Proposal Network 
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(RPN), and RoIAlign (Region of Interest). The fractures are identified and 

segmented using an instance segmentation technique that combines faster-

RCNN and semantic segmentation. To our knowledge, this study is the first to 

concentrate on developing a segmentation mask around the class labels in order 

to identify wrist fractures. The idea behind combining segmentation and 

localization of wrist fractures is to improve the visualization of fracture shape. 

The fracture shape has been observed to extend in vertical and horizontal 

directions in most of the X-ray images collected. Automatic fracture detection 

is improved by creating a segmented mask around the fractures. 

The backbone network, which consists of a top-down and bottom-up pathway, 

is in charge of extracting semantically significant features from the input image. 

We replaced the last-level max-pool layer in the backbone architecture with a 

linear combination of AdaptiveConcatPool (ACP), AdaptiveMaxPool (AMP), 

and AdaptiveAvgPool (AAP) layers. The fracture localization and segmentation 

techniques are then used to detect smaller and larger objects. The sub-

architecture of this stage consists of two networks: RPN and the RoIAlign layer. 

The maximum and average activations are preserved in the proposed 

architecture to allow the neural network to choose the most effective strategy 

without needing to conduct individual experimentation. A modified version of 

RoIAlign proposed in the mask-RCNN architecture is used to crop the region 

of interest precisely using a new technique (RoIAlignv2). The neighboring 

indices are calculated precisely by subtracting the half-pixel offset (0.5) from 

RoI coordinates. This method overcomes the disadvantages of using bilinear 

interpolation with a slightly off-aligned pixel value. The mask around the cracks 

is then generated by combining a parallel layer with the existing object detection 

framework. 

Third, the proposed methodology applies the transfer learning strategy [15] to 

transfer knowledge from the state-of-the-art non-medical dataset known as 

Common Objects in Context (COCO) to the wrist fracture dataset.  It is of 

limited utility to train the models for bone abnormality detection using general-
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purpose datasets like COCO, which contain specific everyday object categories, 

including vehicles, animals, home objects, etc. Instead of a non-medical dataset 

to train the model, we used a dataset of surface cracks with fracture patterns 

resembling those of wrist bone fractures. A surface crack dataset previously 

fine-tuned with the COCO dataset is used to fine-tune the wrist fracture dataset. 

Fourth, the proposed model is fine-tuned by choosing the relevant parameters 

and hyperparameters for analysis and experimentation. The experiments are 

carried out in three stages. In Phase I, the weight file from the COCO dataset 

pre-trained on the standard mask-RCNN architecture is used.  In Phase II, the 

weight file from Phase I is used instead of a random weight initialization 

technique to fine-tune the proposed model on the SCD. We also used the 

concept of freezing and unfreezing specific layers of the proposed architecture. 

The first layers of the CNN architecture are intended to obtain generic features, 

such as the first layer identifying simple gradients of a line, the second layer 

discovering simple shapes, and the third layer combining line and shape 

features. The final layers, on the other hand, are more focused on the specific 

task, such as finding the image's crack patterns in our problem statement. It is 

unlikely that better features will be generated at the initial layers of a CNN 

architecture while updating the gradients because the features predicted by a 

CNN architecture will remain the same regardless of the dataset used. As a 

result, the proposed model's initial layers are frozen during the second phase of 

training (not trained). The entire architecture is unfrozen and trained in the third 

phase by updating the learned parameters. The network updates the parameters 

using a learning rate finder curve and a differential learning rate technique. For 

deep neural architecture segments, this method employs different learning rates. 

1.5 Thesis Outline 

The following is an outline of the thesis. The second chapter delves into the 

fundamental components of computer vision technologies, starting with 

traditional image processing techniques and progressing to deep convolutional 
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neural network designs employed in bone fracture detection and segmentation. 

The self-collected wrist bone dataset and surface crack dataset are introduced in 

Chapter 3. A novel architecture for fracture identification and segmentation on 

wrist X-ray bones is put forward in Chapter 4. In Chapter 5, we discussed the 

hyperparameters required to fine-tune the model. Furthermore, the suggested 

architecture's performance is evaluated and compared to existing approaches 

based on wrist fracture detection and segmentation. In Chapter 6, we summarize 

the thesis, reach conclusions, and talk about future research. 
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CHAPTER -2 

2 LITERATURE SURVEY 

A subfield of artificial intelligence called computer vision enables computers 

and systems to gather information from digital images, videos, and other visual 

inputs and to execute actions or formulate predictions based on that information. 

Computer vision connects a variety of scientific fields, including Computer 

science (Theory, Architecture, Systems, Algorithms), Engineering (Image 

processing, Natural Language Processing, Speech Processing, Robotics, Image 

Processing), Biology (Neuroscience), Mathematics (Machine Learning, 

Information retrieval), and Physics (optics). The Key Elements of computer 

vision include visual recognition tasks like image classification, object 

detection, localization, and segmentation. Since machine learning first 

appeared, nearly every industry has changed significantly to make room for AI 

technologies. One important area that has experienced significant advancements 

in the healthcare industry is where computer vision has assisted in resolving 

some of the most crucial problems. Computer vision has made significant 

contributions to the healthcare industry, from X-ray analysis to fracture 

detection in critical organs. This chapter presents a detailed description of how 

human wrist bone fractures have been analyzed using object detection and 

localization techniques. Furthermore, the current state-of-art of fracture 

detection is presented. 

2.1 Image processing methods for fracture detection 

X-ray is the most frequently used imaging modality for fracture detection due 

to its painless, economical and non-invasive nature, which has gained enormous 

popularity in medical imaging. Poisson, Gaussian, and salt and pepper noise are 

various types of noise artifacts commonly found in radiographs, particularly 

when collected in large quantities from the public domain such as the internet 

[16]. The need for handling such images rises largely as reducing one type of 
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noise sometimes affects the other. Edge detection is another useful step in 

determining the boundaries of objects in the image. Gradient, Laplacian, and 

Sobel have commonly used methods of edge detection. The shapes and sizes of 

bone are non-identical in X-ray images due to the patients' differences in age 

and gender [16]. Normalization could be used to deal with size variations, but 

its results are unsatisfactory as it removes important texture information in 

shrunken images and adds noise and artifacts in the case of larger images. 

Hence, adaptive sampling is employed in various kinds of literature to sample 

X-ray images instead of scaling them [16-19]. Adaptive sampling does not 

require accurate extraction of bone contours as done by the authors in [20]. A 

slight variation of shape is accepted here. Image transforms such as wavelets 

and curvelets are powerful algorithms to obtain decent quality compressed 

images with higher Peak Signal-to-Noise Ratio (PSNR) and compression ratio 

resulting in lesser memory requirements to store medical images. Both wavelet 

and curvelet transform (a multi-scale method originating from wavelets) are 

commonly used for medical image compression, contrast enhancement, edge 

detection, and image registration [21]. They extract an enormous set of 

coefficients or features from the input image, where insignificant features are 

eliminated via a feature selection algorithm for better or faster classification.  

After smoothing and edge detection, the primary step in various image-

processing applications is the extraction of essential features (informative 

representations) from the image. Feature extraction focuses on extracting image 

characteristics that acquire visual image attributes. The classifier's performance 

depends on the perfect set of features retrieved from the image. Texture can be 

a useful cue for detecting diseases or tissue types in medical imaging. Visual 

texture is used for segmenting and discriminating objects from a background 

that has a repeated pattern of elements with some variability in element 

appearance and relative position. The spatial features of an image are described 

by its gray level, spatial distribution, and amplitude, where the amplitude is the 

simplest feature that discriminates bone tissues from X-ray images [22]. Table 
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2.1 demonstrates relevant review findings of the image processing methods 

used for fracture detection. 

With the rise of deep learning neural networks, deep layers of Convolutional 

Neural Networks (CNN) replaced the feature extraction task. CNN is a 

multilayered neural network consisting of convolution, sub-sampling, and fully 

connected layers. Convolution and sub-sampling layers of CNN are part of the 

feature learning process, while a fully connected layer is used for classification. 

ConvNets or CNN can learn various low-level (minor details of the image, e.g., 

lines, dots or edges, etc.) and high-level features (built upon low-level features 

to detect objects and larger shapes) through abstraction in the layers. Features 

are extracted using CNN in recent approaches to fracture detection and 

classification [23-30]. 

Table 2.1 The table demonstrates relevant review findings of the image processing 

methods used for fracture detection. 

Author Bone type Relevant Review Findings 

[16], 2004 femur 

- Image features are extracted by performing texture 

analysis of trabecular patterns in femur X-rays. 

- Neck Shaft Angle (NSA) is considered the feature for 

fracture detection. 

[17], 2004 

femur and 

wrist 

- Active shape and appearance models are used to extract the 

contours of the femur X-rays. 

- Trabecular patterns in femur X-rays are subjected to texture 

analysis to extract image features. 

- The four distinct image features extracted from X-ray 

samples are NSA, GO, IGD, and MRF. 

- Instead of scaling the X-ray images, adaptive sampling is 

used to sample them. 

[18], 2005 

femur and 

wrist 

- GO, IGD, and MRF are extracted from X-ray samples to 

detect femur fractures. 

- Instead of scaling the images, adaptive sampling is used to 

sample X-ray samples. 
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[19], 2007 femur 
 - GO, IGD, and MRF are extracted from X-ray samples to 

detect femur fractures. 

[20], 2003 femur 
- The NSA is the only characteristic that is thought to be useful 

for identifying fractures. 

[23], 2017 pelvis 

Three CNN-based models are used for preprocessing to 

account for variations in medical studies. 

- CNN-frontal is trained to recognize anatomical details in 

pelvis images and distinguish them from other images such as 

the chest, lateral hip X-rays, spinal images, etc. 

- CNN-bounding is a regression-based model trained to locate 

the femur neck and potential fracture sites.  

- CNN-metal is trained to include only pertinent hip fracture 

cases by excluding cases where the metal implant has 

occurred or where there may be another diagnostic challenge, 

[31], 2011 tibia 

-To simultaneously adjust contrast, enhance edges, and 

remove noise in tibia X-ray images, the SACEN technique is 

proposed.  

- Edges in edge-detected regions of tibia images are enhanced 

using the CLAHE algorithm [38], and noise is eliminated in 

gray areas of the non-edge region using the WEAD algorithm 

[39]. 

- In the second stage, the bone image from the X-ray is 

segmented. Next, using a region-growing algorithm, the 

diaphysis region is extracted from the epiphyses and fleshy 

regions of the tibia X-ray images. 

- Various texture features were extracted from the processed 

tibia X-ray images, including GLCM, GO, MRF, and IGD. 

[32], 2017 
multiple 

bones 

- Scale-Invariant Fourier Transform (SIFT)-based feature 

extraction is used after the Haar wavelet transform [42] to 

improve image quality by reducing noise in the X-ray images. 

[33], 2011 femur 

- The input image is converted to binary form to increase 

calculation speed and simplify the process. 

- A median filter is used to remove fine particles after the 

Laplacian edge detector has detected the edges of the femur. 
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- The shaft and non-shaft regions of femur images are 

separated using the K-means unsupervised clustering 

approach. 

[34], 2012 tibia 

-The quality of X-ray images is enhanced by combining an 

ICA and wavelet-based hybrid denoising technique. 

- Combining texture and shape features improves the 

performance of the classification system. GLCM, GO, MRF, 

and IGD are the main tools for extracting texture features in 

tibia images. 

- Shape features in tibia images are extracted using the fast 

Hough transformation algorithm [40] after segmenting 

diaphysis regions. 

[35], 2013 hand bones 

- The median filter reduces salt and pepper noise in bone X-

ray images. 

- GLCM entropy, contrast, correlation, and homogeneity are 

used to extract texture features. 

- Using Weka supervised attribute selection, 84 features are 

ultimately chosen from thousands of features extracted from 

hand X-rays for fracture detection. 

[36], 2013 long bones 

- Histogram equalization is used to handle intensity variations 

between X-ray images. 

- A quick and effective filtering algorithm is used to handle 

Gaussian noise; this algorithm outperforms mean, Weiner, k-

means, alpha-trimmed mean, and trilateral algorithms in terms 

of PSNR and mean absolute error. 

- Bone images are improved using a well-known filtering 

algorithm called Haar wavelets. 

- The k-fill algorithm is used to handle salt and pepper noise. 

- A modified version of the Canny algorithm is used to find 

edges. 

- A well-known Harris algorithm and a tensor-based corner 

detection algorithm are used to detect corners (the intersection 

of two edges) [41]. 

[37], 2018 tibia 

- A grayscale image is created from an RGB image. 

- Tibia bone regions are enhanced in images using USM 

(Unsharp Mask Filter). 
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- To detect breaks, the Harris corner detection algorithm is 

used. 

2.2 Conventional machine learning algorithms for fracture detection 

Various features extracted, such as textual, shape, edges, and horizontal and 

vertical lines, are fed into classification algorithms, which predict the 

occurrence of bone fractures and classify them accordingly. Once the ideal set 

of features is fed into the classifier, the accuracy of fracture detection is 

determined by the classifier chosen. As a result, appropriate features must be 

extracted to create a powerful classification model.  Table 2.1 displays relevant 

review findings of conventional machine learning-based fracture detection 

algorithms.  

Neck-Shaft Angle (NSA) was the sole feature used in the initial work on 

automatic fracture detection [20]. Radiologists classified the image as fractured 

if the NSA is less than 1160. Using this model, 94.4% of training samples and 

92.5% of test samples could be correctly identified. The model's inability to pick 

up on slight variations in the femur neck-shaft angle is the main cause of the 

test cases' 7.5% error rate. Trabeculae are found in the upper extremity region 

of the femur, and when a fracture occurs, they significantly alter the orientation 

of the femur's neck and head. The NSA can be used to identify these changes, 

but this method leaves local disruptions undetected. Therefore, a novel method 

is suggested that uses feature extraction from femur X-rays followed by 

classification to perform texture analysis of trabecular patterns to find such 

minor disturbances [16, 17]. Researchers in [16] extracted Gabor features, while 

[17] and [18] used the Gabor Orientation (GO) they had previously obtained 

from [16] and also acquired Intensity Gradient Direction (IGD) and Markov 

Random Field (MRF) texture features from femur X-rays. The classifier of 

choice is then fed these features to identify fractures in X-ray samples. In 30 X-

ray samples, Gray Level Co-occurrence Matrix (GLCM) is the only feature used 
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to classify femur fractures, and it achieves sensitivity and accuracy of 80% and 

86.67%, respectively [33].  

An approach to machine learning called ensemble techniques combines many 

base models to create a single, optimal prediction model. Ensemble learning 

approaches have enhanced the performance of machine learning models, 

making the model more reliable. 

2.2.1 Ensemble based classification system 

An ensemble machine learning technique combines various models or 

classifiers to create the best model that can most accurately predict our desired 

outcome. The fundamental idea behind ensemble models is to use multiple 

learning algorithms concurrently to produce better predictions than a traditional 

individual model. The ideal set of features that can be retrieved or learned from 

the image will determine how accurate the classifier is. However, by combining 

different classifiers and integrating the outcomes of every independent 

classifier, the accuracy could be further increased. A wide range of fields, 

including face recognition [43], geospatial land classification [44], video-based 

face recognition system [45], medical image segmentation [46], wind power 

forecasting [47], etc., have shown involvement in ensemble-based classification 

systems. 

By avoiding overfitting issues and lowering bias and variance error in contrast 

to its component classifiers, these models have demonstrated better accuracy 

(low error). The significance of these models can be understood by the fact that 

ensemble-based models were used to achieve the best accuracy in several 

prestigious machine-learning competitions, including the well-known Netflix 

challenge [48], the Knowledge Discovery in Databases (KDD) cup 2009, and 

Kaggle. From 2003 to 2015, the most prevalent ensemble-based models for 

diagnosing human bone fractures used the Neural Network (NN), Support 

vector machine (SVM), and Naive Bayes (NB) algorithms. 
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With the introduction of multiple-classifier-based systems, where the individual 

results from base classifiers are fused, it has been observed that the effectiveness 

of the classifier is significantly improved [16; 18; 31; 34]. The diversity of the 

models influences the choice of the best classifier out of all the competing 

models. It is flawed to select a classifier solely based on training data accuracy. 

The methodologies listed below can be used to achieve some degree of diversity 

among the classifiers that make up an ensemble system, which is necessary for 

the system to perform well [49]: 

1. Utilizing various classification algorithms in an ensemble system. 

2. Applying the same classification algorithm with various instantiations or 

hyper-parameter configurations. 

3. Making use of various feature sets: 

(a) Feature selection  

(b) Random selection 

4. Making use of various training sets: 

(a) Bagging 

(b) Cross-validation 

a) Bagging or Bootstrap Aggregating  

Non-hybrid classifiers combine the same classification algorithm with different 

instantiations or hyper-parameter settings to create ensemble models, a widely 

used ensemble modeling technique. Bootstrap aggregation is one of the earliest 

and most basic ensemble-based techniques. It trains several models of the same 

learning algorithms using subsets of randomly chosen datasets drawn from the 

initial training set with replacement [50]. The output of the multiple-classifier 

or ensemble is predicted based on the majority votes of the individual classifiers. 

This algorithm can be modified in many ways that improve the model's 

performance [51]. The most well-known use diverse training data for individual 

classifiers, and the other uses various classification algorithms. The bagging 

process involves running various classification algorithms in parallel while 

using training subsets chosen randomly from the training dataset. The outcome 
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of this ensemble model is predicted by individual classifiers voting in favor of 

their predictions. The bagging process involves concurrently executing distinct 

classification algorithms using training subsets chosen randomly from the 

training dataset [52]. The outcome of this ensemble model is predicted by 

individual classifiers voting in favor of their predictions, as depicted in Figure 

2.1. 

b) Boosting 

Boosting is a straightforward variation of the bagging technique that aims to 

enhance the classification model by sequentially turning weak learners into 

strong learners, each trying to improve its forerunner [53]. The primary 

distinction between bagging and boosting is that the former uses a parallel 

training stage in which each model is developed independently. In contrast, the 

latter uses a sequential approach in which the success of a previous classifier 

determines the architecture of the current model [54]. Similar weights are 

initially assigned to the data in a sequential process, and these weights are then 

redistributed after each training stage to allow subsequent learners to focus more 

on the misclassified cases now associated with higher weights. Boosting is a 

sequential process in which initial input points and data are given similar 

weights and chosen randomly from the training set. After each training and 

testing session, misclassified samples are identified and given higher weights. 

This enables later learners to emphasize cases incorrectly classified and more 

likely to be chosen for the next classification [55]. The boosting process is 

illustrated in Figure 2.2. 

c) Stacked Ensembles 

Base learners are the first layer of a multi-layer learning process known as 

stacking, followed by lower-tier meta-learner stages that incorporate base 

learners as input to create the optimal combination of first-level base learners. 

In 1992, the concept of a super learner was first put forth [56], but it was not 

until 2007 that it was put into practice with improved performance [57], 

illustrative of how stacked ensembles support the creation of the best learning 
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model. A well-known machine learning algorithm called random forest uses 

bagging to combine weak learners (like decision trees) into a single, powerful 

learner. 

With 145 X-ray images from different body parts, including the foot, knee, arm, 

hand, ankle, and lower leg, and 10-fold cross-validation, a fracture identification 

method is built using the Stacked Random Forests Feature Fusion (SRF-FF) 

technology [58]. As shown in Figure 2.3, the first layer of a four-layer random 

forest uses five decision trees, while the subsequent layers use fifteen trees. The 

Efficient Sub window Search (ESS) algorithm is used to determine the regions 

with the highest likelihood of fracture occurrences after the classifier has been 

trained to provide confidence score maps that reflect the likelihood of fractures 

in X-ray images [59]. The proposed model outperforms a single layer of stacked 

random forest and SVM in terms of locating and identifying fractures in X-ray 

images.  

Divide and conquer is a different ensemble strategy based on the notion that 

each sub-problem is easier to solve than the main problem. It needs a large 

training set and challenging problems to form larger clusters and produce 

successful results. The challenging issue of fracture identification is split into 

the kernel space of the Gini SVM as opposed to the feature space due to the lack 

of a larger training set [19]. The Gini SVM is first trained on training set T, and 

on testing set V, the error is calculated. In the next step, a new SVM and training 

set T' of T is used to categorize the new validation set further V' (a subset of V), 

which was chosen using the calculated error. This architectural design increases 

the accuracy of the SVM by ensuring that the lower level SVM (child) always 

facilitates the performance of the higher level SVM (Parent). 
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Figure 2.1 Various classification algorithms are run in parallel using the subsets 

drawn randomly from the training dataset during the bagging process. Individual 

classifiers in this ensemble model cast votes in favor of their predictions to determine 

the model's outcome. 

 

Figure 2.2 Boosting is a sequential process in which the initial input points and data 

are selected randomly from the training set and given similar weights. After each 

training and testing session, samples that were incorrectly classified are identified and 

given higher weights. 
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Figure 2.3 Flow chart of stacked random forests feature fusion [58] 

Table 2.2 The table presents pertinent review results of traditional machine learning-

based fracture detection algorithms. 

 

Ref 

 

Bone 

type 

 

Relevant review findings 

[16] femur 

The following feature-classifier combinations have been trained to 

identify femur fractures:  

1. NSA + Bayesian 

2. SVM+NSA 

3. SVM + NSA + NB (ensemble) 

Rules 1 of 2 and 2 of 3 provide the best fracture-classifier 

combination, which is as follows: If any 1 out of 3 or any 2 out of 3 

combinations detects the fracture, the fracture has been detected. 
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[17] 

femur 

and 

wrist 

Classification is done after feature extraction to find fractures in 

wrist and femur images. The following feature-classifier 

combinations have been trained to find fractures in X-rays of the 

wrist and femur: 

1. Thresholding + NSA 

2. GO + Bayesian 

3. GO + SVM 

4. IGD + Bayesian 

5. SVM + IGD 

6. MRF + SVM  

If 2 out of 6 or 2 out of 4 combinations detect the fracture, the 

femur has a fracture. When predicting fractures in wrist images, 

a combination of MRF and SVM has demonstrated the best 

performance. 

[18] 

Femur 

and 

wrist 

The following feature-classifier combinations have been trained to 

find fractures in X-rays of the wrist and femur: 

1. GO + Gini-SVM 

2. MRF + Gini-SVM (performed best in terms of sensitivity and 

accuracy for femur images) 

3. IGD + Gini-SVM 

When texture features and various classifiers are combined, wrist 

fracture detection performance improves. 

[19] femur 

- There are three classifications for fractures: healthy, fractured, and 

unknown. 

- To predict fractures, hierarchical SVM is combined with features 

like GO, MRF, and IGD, with the divide and conquer technique 

serving as the primary guiding principle. 

[20] femur 

- The only feature for fracture detection is the adult femur's neck-

shaft angle. 

- An adult femur is healthy if it has an NSA of 120 to 130 degrees; a 

fracture is identified if the NSA is less than 116 degrees. 

-Trabeculae are found in the upper extremity region of the femur, 

and when a fracture occurs, they significantly alter the orientation of 

the femur's neck and head.  

-The neck-shaft angle can identify these changes, but this method 

leaves local disruptions undetected. 
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[31] tibia 

The following feature-classifier combinations have been trained to 

find fractures in X-ray images of the tibia: 

1. BPNN texture features 

2. SVM-based texture features 

3. NB texture features 

4. BPNN + SVM + NB texture features (ensemble) 

where the GLCM Mean, GLCM Variance, Energy, Entropy, 

Homogeneity, GO, MRF, and IG are texture features 

A tibia fracture is present if 2 of 4 combinations do. 

Gradient analysis combined with a modified Hough transform is 

used to locate the fracture. 

[33] femur 
GLCM is used to classify fractured and healthy cases with 86.67 

percent accuracy. 

[34] tibia 

The following feature-classifier combinations have been trained to 

find fractures in X-ray images of the tibia: 

1. Texture features + ensemble (BPNN+SVM+NB) 

2. Shape features + ensemble (BPNN+SVM+NB) 

3. Shape features + texture features+ ensemble (BPNN+SVM+NB) 

Best combination 

[35] 
Hand 

bones 

- To identify bone fractures in hand X-rays, the base classifiers NB, 

DT, NN, and BN are chosen. 

- Wavelet, curvelet, and GLCM feature set performances of the 

individual and ensemble classifiers are reported. 

-When wavelet features are used independently with an NB classifier 

and combined feature sets, the accuracy is at its highest. 

[36] 
long 

bones 

- DT, SVM, NB, and NN classifiers were selected to train the fracture 

detection and classification model. 

- For both binary and multiclass classification tasks, SVM 

outperformed all other classifiers with an accuracy rate of more than 

85% when using the ten-fold cross-validation technique. 

[37] tibia 
- DT and KNN classifiers are used for fracture detection and 

classification respectively. 

[58] 

multiple 

bones 

 

- Fracture detection and classification are performed using the DT and 

KNN classifiers, respectively. 

- A multi-layer classifier with different random forests on each layer is 

used to detect the fracture. 
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- The Efficient Subwindow Search (ESS) algorithm is used to find the 

fracture.  

81% of the detection rate is contained in the top seven bounding boxes 

produced due to fracture localization. 

-The proposed model performs better at locating and detecting fractures 

in bone X-ray images than SVM and a single layer of stacked random 

forest. 

2.3 Deep learning-based algorithms for fracture detection 

This section discusses deep learning-based algorithms developed for bone 

fracture detection. Before that, the next subsections introduce deep learning and 

explore various architectures developed from early to advance deep CNNs. 

2.3.1 Deep learning 

Deep learning, a subset of machine learning and Artificial Intelligence (AI), is the 

process of continually training data to produce predictions as depicted in Figure 

2.4. These trained models can autonomously pick up new skills, improve with 

practice, and make predictions about unknowable facts [26]. In a machine 

learning technique, finding key features that show anomalies or patterns in the 

data is crucial. These features are often created primarily with human experience, 

but models can now automatically learn these properties as machine learning 

techniques develop.  

There are two basic groups within which different DCNNs fall. Convolutional 

and Fully Connected (FC) layers are the first layers in traditional architectures. 

Down-sampling layers are the most current structural variant. The former 

comprises networks like AlexNet [60] and VGGNet [61], while the latter mostly 

contains more modern systems like GoogLeNet [62] and ResNet [63]. The 

primary difference between these two types of networks is that more current 

networks typically adopt some unique network topologies, such as inception in 

GoogLeNet or residual blocks in ResNet, and substitute the FC layers with an 

average global pooling layer [63, 64]. More thorough explanations of these 

networks will be provided in the subsequent subsections, followed by a discussion 
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of sophisticated DCNN models and how fracture detection have used these 

models. 

 

Figure 2.4 Deep learning is a subset of machine learning, which is a subset of 

artificial learning, and it is capable of performing tasks that require human 

intelligence [95]. 

2.3.1.1 Early deep CNNs 

A CNN or ConvNet is a unique, multilayered neural network created specifically 

for pattern recognition that allows it to identify visual patterns straight from pixel 

pictures with little to no pre-processing. A sizable visual database created for use 

in image classification and object detection was made available by the ImageNet 

project [65]. In order to promote the development and assessment of cutting-edge 

algorithms, this project also ran the ImageNet Large Scale Visual Recognition 

Competition (ILSVRC), an annual software competition [65The revolutionary 

CNN architecture LeNet-5 is presented in this section, followed by discussions of 

the leading CNN architectures of the ILSVRC: AlexNet, Network in Network 

(NIN), VGGNet, GoogLeNet, and ResNet. In this thesis, the collection of 

specified CNN architectures is referred to as L-A-N-V-G-R. 

a. LeNet-5 (1998) - Comparing conventional architecture to traditional neural 

networks has resulted in a series of advancements in image classification. LeNet-

5 [66], the first CNN model released in 1998, had seven layers, only three of 
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which were convolutional (C) and one of which was Fully Convolutional (FC), 

with a total of 60,000 parameters. In Figure 2.4, this network is displayed. 

The output of this network is a digit between 0 and 9, which is used to classify 

and identify 32 x 32-pixel greyscale handwritten numerals. 

 

Figure 2.5 LeNet-5 architecture consisting of 7 layers [66]. 

b. AlexNet (2012) - Higher resolution images need to be processed using larger 

convolutional layers. Thus, AlexNet, which had 60 million characteristics in 

five convolution layers and three fully-connected layers, is credited with 

starting the background of deep learning [60]. Figure 2.5 depicts the AlexNet 

architecture. The reasonably quick and simple AlexNet is slightly changed into 

ZF-Net [67]. This network performed substantially better than its predecessors 

[60, 66]. In a conventional classification network, AlexNet has been applied 

after downsizing the input image and applying convolutional and FC layers. The 

output would then be the expected class label for the input image. 
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Figure 2.6 AlexNet architecture [60]. 

c. NIN (2013) - The capacity to distinguish between local patches within the 

input patch was improved by a Network in Network (NIN) design [64]. Three 

micro neural networks, essentially a nonlinear function approximator, are 

stacked to generate this model. The Multilayer Perceptron (MLP) is used to 

create the tiny neural networks. As shown in Figure 2.6, the filter size for each 

layer of the MLP structure is 1x1, except for the first layer. 

Like CNN, the micro-networks are slid over the input to produce the feature 

maps, which are then supplied into the following layer. Multiple MLP structures 

are stacked to provide deep NIN, while the classification layer uses global 

average pooling. 

 

Figure 2.7 MLP structure [64]. 



28 

 

d. VGGNet (2014) - This network's primary contribution is to assess 

correctness through deepening the network. Mini batch gradient descent with 

speed and dropout was used to increase the classification accuracy of this 

network, which had up to 19 layers and 138 million parameters [61]. Six 

VGGNet configurations have been proposed, ranging from 11 weight layers 

(eight convolution and three fully linked layers) to 19 weight layers (with 16 

convolution and three fully connected layers). The total number of filters (depth 

of each layer) reaches 512 after starting with 64 in the first layer and growing 

by a factor of two after each max-pooling layer. Figure 2.7 depicts the VGGNet-

16 design. Due to its extremely homogeneous design, VGGNet placed first in 

the single-object localization test at ILSVRC2014 [65]. 

e. GoogLeNet (2015) - The first section of the GoogLeNet design is similar to 

LeNet (Figure 2.4) and AlexNet (Figure 2.5), as shown in Figure 2.10, while 

the block's stack is derived from VGGNet (Figure 2.7). LeNet, AlexNet, and 

VGGNet's stack of FC layers are swapped out for GoogLeNet's worldwide 

mean pooling at the network's end. Google's top-5 error rate was 6.67%, which 

is quite near the level of human performance. It won first place in the 

ILSVRC2014's classification and detection task [65]. The subsequent adoption 

of Batch Normalization (BN) speeds up the training process for GoogleNet [69].  

Figure 2.9 shows the GooLeNet model with 22 layers. 

 

Figure 2.8 VGGNet-16 architecture [61]. 
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Figure 2.9 Inception module architecture [62]. 

 

 

Figure 2.10 22-layer GoogleNet architecture [68]. 

f. ResNet (2016) - Since it is more difficult to train deeper neural networks than 

shallower ones, the development of ResNet marked the start of a new phase in 

deep neural network training efficiency [63]. In order to facilitate training and 

optimize the significantly deeper networks, which produced greater accuracy, a 

residual learning system was developed. Instead of learning unsourced 

functions, the layers were deliberately reformed to learn residual operations 

concerning the layer inputs. The introduction of the ResNet Unit (RU), shown 

in Figure 2.11, was made to address the critical issue [70]. This occurs when 

adding more layers to a powerful deep model causes the training error to 

increase. By creating the shortcut interconnection as identity mapping, the 
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ResNet solved this issue. The depth of the residual networks might range from 

18, 34, 50, 101, or 152 layers. The most complex ResNet is less complex while 

being eight times larger than VGGNet. This network demonstrated easier 

optimization than VGGNet while achieving an increase in an object accuracy 

rate of 28% [62]. In Figure 2.12, the ResNet with a 34-layer residual is 

displayed. This network has four building blocks, and each has a stacking of 

RU building blocks. 

ResNet-34 consists of 18 RU building components in total. Comparing the 

VGGNet to AlexNet, which has nearly three times as few parameters, involves 

much processing. Compared to AlexNet, which has over 60 million parameters, 

GoogleLeNet's Inception architecture has about 7 million parameters, which is 

a 9-times reduction. The ability to transport gradients back across all levels in 

an efficient manner is a worry, though, considering the relatively enormous 

depth of Google Net's 22 layers. The great performance of shorter networks in 

this task leads to the conclusion that the features generated by the middle layers 

of the network should be highly discriminative, which might be used by 

connecting auxiliary classifiers to the intermediate levels [62]. A deeper system 

would produce the same classification error as its shallower counterpart using 

ResNet's shortcut identity mappings [69]. By employing this method, networks 

containing the Inception module can achieve comparable accuracy while being 

less expensive [62]. 

 

Figure 2.11 The architecture of GoogLeNet [62]. 
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Figure 2.12 A ResNet Unit (RU) [63]. 

 

Figure 2.13 A 32-layer ResNet architecture [63]. 

2.3.1.2 Advanced deep CNNs 

More sophisticated DCNN architectures have adapted the basic L-A-N-V-G-R 

networks for various purposes. Following is a list of several of these advanced 

DCNNs: 

a) Object detection 

RCNN, a region-based technique using CNN characteristics, was proposed by 

Uijlings et al. [70]. The ConvNet structure of AlexNet [60] is swapped out for 

a 16-layer GoogLeNet [62] model to build this architecture, resulting in a 

straightforward and scalable object detection technique. To accurately identify 
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human faces, Taigman et al. suggested the nine-layer DeepFace CNN model 

[71]. 

With a network known as DeepID-Net, Ouyang et al. [72] tackled a specialized 

identification problem for distorted objects. To aid in understanding the 

distortion of object pieces, this framework provides a deformation-limited 

pooling layer. Although this method is based on RCNN, it is significantly more 

complicated because the deformation is specified as the visual features at many 

semantic levels. A subsequent method for modeling transformation matrices 

was published by Dai et al. [73]. Liu et al. proposed the Single Shot Detector 

(SSD) object identification model, which included predictions from several 

feature maps with different resolutions to recognize objects of various sizes. 

SSD is much faster than RCNN because it eliminates proposal development and 

integrates coordinates regression and region classification into a single network 

[74]. 

Wang et al. recommended the Fully Convolutional Network Based Tracker 

(FCNT) to address the visual tracking problem [75]. FCNT is a tracker network 

built on FCN that focuses on high-level features to recognize the semantic class 

of the object and low-level characteristics to acquire more exclusionary data to 

more effectively distinguish the same appearance from the background. 

b) Classification  

Instead of providing supervision solely at the output nodes and transmitting this 

supervision back to earlier levels, Lee et al. suggested Deeply-Supervised Nets 

(DSN) to give a close integrative oversight of the hidden layers [76]. They 

applied the auxiliary classifier to each buried layer, regarded as an additional 

regularizer. However, Szegedy et al. [62] had already introduced the importance 

of the auxiliary classifiers. A highly difficult job of fine-grained recognition to 

differentiate among visually very similar things such as kinds of birds, breeds 

of dogs, or types of airplanes, was handled by the DeCAF network presented by 

Donahue et al. [77]. Classification tasks like fine-grained recognition have 

substantial intra-class and low inter-class variation [77, 78]. Although 
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introducing a residual learning framework with 152 levels made it easier to train 

deeper networks, the high computing cost of deeper neural networks still makes 

them difficult to deploy. At that point, the two main issues that need to be 

handled are disappearing gradient and model size. Using a feed-forward ResNet 

technique, Huang et al. [79] addressed the gradient vanishing issue by 

connecting every layer to every other. Their model, DenseNets, also decreased 

the number of variables. Both ResNet and DenseNet's designs fall under the 

categories of pre-activation and cross-layer connections. A batch normalization 

layer follows the convolutional layer in these networks, and the output of one 

layer can be utilized as the input for numerous following layers. These two well-

known deep learning networks were developed to recognize various classes, 

including the 1000 classes in ImageNet. 

c) Pixel Classification  

By fusing several low-level image data with high-level context, Girshick et al. 

suggested an object recognition and semantic segmentation network [80]. This 

network uses bottom-up region recommendations in conjunction with CNNs to 

localize objects and segment them. 

Another deep neural network, dubbed DeepLab, which enhances the 

localization of object boundaries, also addresses semantic segmentation [81]. 

This model incorporates two new elements: the Atrous Spatial Pyramid Pooling 

(ASPP) module to partition the objects at various scales and the Atrus 

convolution, a potent tool for controlling the resolution in dense prediction. The 

Full Resolution Residual Networks (FRNN) model, another DCNN-based 

model for semantic segmentation, improves localization accuracy while 

offering remarkable recognition performance [82]. 

Most DCNNs have excessive parameters and need millions or even billions of 

starting point operations. Therefore, deep network designers' primary concerns 

are storage and computing capacity. One of the primary drivers for reducing the 

number of these networks' parameters is to increase the effectiveness of their 
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deployment on mobile apps like MobileNet [83] or their training in Internet-

scale clusters, which results in lower computing costs and storage requirements. 

An overview of dimension reduction methods used with deep networks is 

provided in the next section. 

2.3.1.3 Dimensionally reduced deep CNNs 

Although the deep networks have dramatically increased accuracy, there is a 

significant processing overhead due to the deep networks' enormous number of 

parameters. Implementing a deep network on hardware systems with 

constrained processing resources, such as mobile phones, is challenging 

because of the high storage requirements and computationally expensive 

floating-point matrix multiplications. Considering ways to lower the memory 

and compute costs in deep network topologies is crucial. 

In order to speed up just the testing phase of the large-scale training network, 

Denton et al. devised a linear compression algorithm [84]. This method cuts the 

test time two-fold by taking advantage of CNNs' linear nature. The RCNN 

object detection network requires a lot of computing power. Two improved 

versions of this network are developed to increase its efficiency: the first, fast-

RCNN, extracts the Region of Interest (RoI) [85]; the second, faster-RCNN, 

builds the Region Proposal Networks (RPNs) on top of the RCNN 

convolutional feature mappings [86]. FitNets is a framework that Romero et al. 

created to condense a wide, deep network with many parameters into a deeper, 

thinner network with fewer parameters [87]. The compressed network is trained 

using the intermediate-level cues from the larger network. FitNets has shown 

that deeper, narrower networks can generalize and operate more quickly than 

wider ones. 

Han et al. established a parameter reduction technique to minimize 

computational time and memory consumption in CNNs by deleting extraneous 

links in the first round of learning and then fine-tuning only the critical 

connections in the second [88]. This method maintained the accuracy of 
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AlexNet, which had nine times fewer parameters, and VGG-16, which had 13 

times fewer parameters. By removing the less significant filters, ThiNet used 

filter level pruning as another optimization strategy [89]. Instead of using the 

statistics from the current layer, ThiNet prunes the filters depending on the 

statistics from the next layer. It reduced the VGGNet-16 model's size by a factor 

of 16 while just slightly decreasing accuracy. Landola et al. SqueezeNet is a 

different compressed version of AlexNet that keeps accuracy while having 50 

times fewer parameters [90]. The re-module, which this technique introduced, 

has two different sorts of layers: the compress convolution and the expansion. 

In a different architecture known as Deep Fried Convnets, the fully connected 

layers are re-parametrized using an adaptive Fastfood transform algorithm 

because they contain high and over 90% of the CNN parameters [91]. 

Artificial Neural Networks (ANN) are a commonly used computational model in 

machine learning for identifying intricate patterns in the data. These are brain-

inspired systems that think about replicating how people learn. Although 

perceptrons, also known as neural networks, have been around since the 1940s, 

they have only just begun to play a significant role in artificial intelligence. The 

development of a method known as "backpropagation" is one reason they have 

grown prominent in machine learning. With backpropagation, neural networks 

can modify the weights of their hidden layer neurons to produce the desired 

results [93].  

In radiology, professional radiologists can extract important details from scans 

and evaluate them using their skills, knowledge, and experience. As a result, it 

presents a fantastic opportunity to use machine learning algorithms to 

automatically forecast the data with accuracy comparable to that of a radiologist 

expert [92]. For bone fracture identification, the Intelligent Bone Fracture 

Detection System (IBFDS) integrates image processing and neural network 

approaches [32]. First, a feature extraction technique based on the Scale Invariant 

Fourier Transform (SIFT) algorithm [94] is used to improve the image quality by 

minimizing noise in the X-ray images. The retrieved characteristics are then used 
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to classify images into the fracture and non-fracture categories using a 3-layer 

backpropagation ANN.  

Artificial Neural Networks (ANNs), which have numerous hidden layers and 

offer higher degrees of abstraction, have advanced thanks to deep learning. By 

adding deep layers to the model that enable the system to learn complex data, 

deep neural networks have significantly increased the accuracy of task prediction 

[96]. Many factors, including the availability of large datasets made possible by 

the rapid accumulation of electronic data in the form of Electronic Medical 

Records (EMRs), Graphics Processing Unit (GPU) advancements that improved 

performance with graphics and videos, and advancements in the deep learning 

algorithm made possible by the incorporation of multiple layers in deep learning 

architecture, are driving the growth of deep learning in the healthcare sector [97]. 

Convolutional Neural Networks (CNN) is a type of deep learning architecture 

that includes fully linked, sub-sampling, and convolution layers, as shown in 

Figure 2.14. When the CNN model was created, feature learning approaches 

radically changed since it can learn the features rather than manually program 

them into the system. While the fully connected layer is utilized for classification, 

CNN's convolution and subsampling layers are used for feature learning. It has 

achieved enormous success in several areas of medical image analysis, including 

image segmentation, image registration, image fusion, image annotation, 

genomics, etc. It has recently emerged as a machine learning breakthrough.  

To interpret radiographic data, radiologists combine sense, memory, pattern 

recognition, and cognitive thinking. Their performance is impacted by numerous 

distractions, which ultimately increases workloads and weariness. Therefore, 

improving patient security through developing systems or technologies 

automatically identify abnormalities or patterns in musculoskeletal radiographs 

without human intervention [98]. The AlexNet [60] model, created by Alex 

Krizhevsky et al. in 2012, sparked a revolution in computer vision and provided 

deep CNN with fresh knowledge. It was first created to participate in the 

ImageNet competition, whose overall architecture is comparable to LeNet-5 [66] 
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but far larger. After first placing in the ImageNet competition, it effectively 

persuaded the computer vision community of its value. This revolution was made 

possible by the employment of efficient regularization parameters, data 

augmentation techniques, rectified linear units, and the usage of graphics 

processing units to meet computing requirements. It was listed among the top ten 

deep learning milestones of 2013 [99]. The greatest strength of a CNN is its deep 

design, which enables the extraction of fine characteristics at various abstraction 

layers [100]. 

 

Figure 2.14 A schematic representation of the CNN architecture is shown. 

Convolution, subsampling, and fully connected layers make up its three layers. 

Convolution and subsampling layers are used to classify data, while fully connected 

layers are used to learn features [101] 

2.4 Deep learning-based algorithms for fracture classification and 

localization  

A Deep Convolutional Neural Network (DCNN) needs training data to be 

properly trained. When there is not enough of it, it might be challenging to 

guarantee appropriate convergence of the model, especially in the highly-

restricted field of medical imaging. Data augmentation, which reduces data 

insufficiency and overfitting issues, is the act of generating new data from our 

existing dataset with tiny adjustments such as flips, rotations, mirroring, 

translations, etc. Data scarcity problems, which are the main obstacle to deep 

neural network architectures, are mitigated by CNN architectures' capacity to 
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identify and categorize fractures even when they are oriented differently. From 

2003 to 2018, the number of radiographs used to diagnose fractures increased 

from 500 to hundreds and thousands due to data augmentation approaches. Only 

a few published publications (included in Table 2.3) on fracture diagnosis have 

used augmentation methods on their datasets. Future work could successfully 

implement this strategy to improve the classifier's performance. A CNN that has 

already been trained on a separate network can be fine-tuned, another possible 

solution to the data scarcity issue.  

Many researchers have been inspired to use transfer-learning techniques 

because of the dearth of datasets, particularly in the medical field [105]. Pre-

trained CNN is a state-of-the-art image classification network trained on millions 

of images from a specific domain over many weeks on various servers before 

being applied to a different area of interest. This strategy has proven helpful for 

researchers when a lack of resources makes it difficult to build a viable model 

from the start. The very sophisticated and potent set of characteristics required for 

the relevant domain of interest can be obtained using these huge pre-trained 

models [102]. Two different CNN models are compared in a study made by Birks 

et al. [99]. One model is trained entirely from scratch. The other is a pre-trained 

model that has been further adjusted on the necessary domain. Different medical 

imaging applications, such as classification, detection, and segmentation, are used 

to compare the performance of the two models. In the best situation, a tweaked 

CNN model effectively outperformed the CNN model trained from scratch, and 

in the worst case, it performed similarly to the CNN model. Therefore, based on 

the quantity of data available, fine-tuning an existing model might present a useful 

technique to achieve the greatest performance for the application. The pertinent 

review findings of the deep learning-based fracture detection systems are shown 

in Table 2.4. 
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Table 2.3 Researchers' methods for data augmentation in bone fracture detection are 

shown. 

Table 2.4 The pertinent review findings of the deep learning-based fracture detection 

systems are shown. 

Ref 
Target body 

region 

Fracture 

detection type 

Architecture 

used 
Relevant review findings 

[24] 
31,490 wrist 

radiographs 

Fracture is 

detected and 

heatmap is 

generated 

Extension of 

U-Net 

architecture 

Radiographs of ankles, 

knees, spines and other body 

parts totaling 100,855 were 

used for pretraining, and 

31,490 radiographs were 

used for model fine-tuning. 

[25] 

1,891 

humerus 

radiographs 

Fracture classified 

into 4 categories 
ResNet-152 

-Network is fine-tuned on 

medical images. 

-The network's performance 

is evaluated against the labels 

produced by more than 50 

senior orthopedic surgeons. 

[27] 

256,000 

wrist, hand, 

and ankle 

radiographs 

Fracture is 

classified into 4 

classes: fracture, 

laterality, body 

part, and exam 

view. 

5 state-of-the 

art deep neural 

networks 

The network's performance 

is compared to the labels 

created by two senior 

orthopedic surgeons. 

[28] 

38 Distal 

radius 

fractures 

Fracture is 

detected and 

localized 

faster R-CNN 

- For training, 4,476 

augmented images are used. 

- Numerous augmented 

images were used to test the 

object detection precision. 

Author 
Images before 

augmentation 

Images after 

augmentation 
Augmentation techniques 

[23], 2017 Not available 45,492 
Translation, rotation, histogram 

matching, shearing 

[24], 2018 Not available 31,590 

cropping, horizontal mirroring, 

rotation, lighting and contrast 

adjustment 

[25], 2018 1,891 >40,000 
Shifting, scale transformations, 

rotation 

[26], 2018 1,389 11,112 
Horizontal flip, rotation, width and 

height shift, shearing, zooming 

[63], 2017 Not available 40,561 Lateral inversion, rotation 
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[29] 
7,356 Wrist 

radiographs 

Fracture is 

detected and 

localized 

faster R-CNN 

The network's performance 

is compared to the labels 

created by two senior 

orthopedic surgeons. 

[30] 
1,946 Wrist 

radiographs 

Fracture is 

detected and 

heatmap is 

generated 

“DeepWrist” 

model is 

proposed. 

 

- The model is assessed using 

two test sets: one for the 

general population and one 

difficult test set with only 

cases requiring confirmation 

by CT. 

- The radiograph is cropped 

to reveal the presence of the 

fracture at three landmark 

locations. 

- The ImageNet dataset is 

used to pre-train the model. 

The recent improvements in deep learning methodologies and hardware 

processing have made object localization and identification intuitive. As a 

result, numerous industries have seen a rapid increase in the widespread 

adoption of object detection algorithms. However, the traditional methods of 

object detection using the sliding window approach produced thousands or even 

millions of bounding boxes, making them computationally expensive. By 

superimposing the image regions and comparing pixels one by one, the sliding 

window method [59] compares the images. Because of the overall complexity 

of the method, it is thought to be perplexing. If the source image is stretched, 

rotated, given different contrast levels, cropped, or zoomed using this technique, 

it also gets harder to compare. 

A few earlier studies relied on the radiographs' binary classification to 

determine whether a fracture existed or not [23, 25, 26]. However, object 

detection models have been effectively used in recent years to identify the 

presence of fractures and their locations, providing better visual interpretability 

for healthcare professionals than binary classification. The wrist fractures are 

discovered and localized by extending the U-Net architecture, which recognizes 

the fracture and further localizes it by producing a heat map. On two different 

test sets, the model produced AUC values of 96.7% and 97.5%, respectively 
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[24]. Using faster-RCNN architecture, the radius and ulna fractures in wrist X-

rays are identified, producing a bounding box and likelihood of fracture 

occurrences [28, 29]. 

Instance segmentation is a technique that uses a bounding box to mask the 

objects' actual shape rather than their location. These tasks combine 

localization, classification, and segmentation tasks into a single output that is a 

polygon mask encircling the defined target. Some of the most well-liked 

methodologies for performing instance segmentation include mask-RCNN 

[101], U-Net [104], and DeepLab [81]. Compared to object detection and image 

classification, instance segmentation demonstrates more promise and accuracy 

in tracking the defects/objects in the image. In addition to the current branch for 

forecasting an object mask and a bounding box, it tends to add a parallel branch. 

Instance segmentation, which combines faster-RCNN and semantic 

segmentation, has been used in this research. To our knowledge, this is the first 

study that focuses on fracture detection by creating a bounding box and 

segmentation mask around the fracture. We have determined that drawing a box 

only around the fracture does not accurately depict the structure of the fractures. 

Each image is labeled by drawing a more intricate shape, like a polygon, around 

the fracture.  

2.5 Conclusion 

The development of reliable fracture detection systems utilizing computer vision 

techniques has revolutionized due to the rise of deep learning. With little pre-

processing, multi-layer neural networks can detect visual features directly from 

image pixels. Deep learning's primary benefit is that this does not require 

manually created features. As part of the classifier learning process, it instead 

performs automated and optimized feature extraction, which does not 

compromise the correctness of object recognition. According to the research, the 

deep learning-based method generates bone-fracture detection systems with high 

accuracy.  
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Current research priorities include object identification, localization, and other 

computer vision tasks like image classification and object categorization. Since 

errors might occur during manual interpretation of radiographs, automated 

inspection is often necessary for quality or defect evaluation. Automated fracture 

identification has numerous advantages over manual inspection, which is prone 

to human mistakes, complexity, time, and cost. Intensity, color, scale-invariant 

features, and other contemporary feature extraction methods are frequently used 

for object detection applications. Without a plethora of prior knowledge, salient 

feature extraction helps find the salient target. This method can identify fractures 

in the apparent foreground and distinguish them from the background regions. 

Although the saliency strategy provides adequate separation between the fracture 

and the background, additional sophisticated methods are needed due to 

difficulties, including uneven lighting and unessential bone regions. 

In contrast to machine learning models like SVM and PCA, which are primarily 

based on the texture and color of each patch, multi-layer deep convolutional 

neural networks such as ResNet, VGGNet, GoogleNet, and FCN have the 

potential to perceive a non-linear relationship between different variables and 

accomplish influential object detection and localization performance. A fracture 

detection model built on a semantic segmentation network learns from non-

uniform and sophisticated bone regions to extract specific high-level information 

about cracks. 
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CHAPTER -3 

3 DEVELOPMENT OF TWO NOVEL DATASETS FOR 

FRACTION LOCALIZATION AND SEGMENTATION 

3.1 Introduction 

Fracture detection is increasingly incorporating computer vision and image 

processing-based approaches to identify the fracture cracks/patterns in bone X-

ray samples. Researchers in the existing articles have proved the performance 

of the suggested model in their private datasets [23-30]. However, one of the 

key limitations in comparing the existing systems is the absence of the freely 

available standard dataset. Most of the studies mentioned concentrate more on 

classification and detection than segmentation, i.e., these models can determine 

whether a radiograph is fractured or not and can pinpoint the exact locations of 

the fracture by predicting bounding boxes, but they cannot exactly predict the 

shape of the fractures. To our knowledge, there is not a sizable collection of 

uniform images of wrist fractures along with their pixel-by-pixel labels. We 

created a dataset of wrist fracture images with their labels, a part of which is 

now accessible online on the GitHub platform [118]. 

The availability of the labeled dataset is the main obstacle to achieving multi-

label classification on various anatomical locations. A promising solution to this 

issue is to improve a CNN that has already been trained on a different network.  

These pre-trained models enable researchers to gain the very sophisticated and 

potent features required for the topic of interest. The model can be trained on 

numerous images rather than millions of non-radiology images. The researchers 

have pre-trained the model on non-medical datasets and fine-tuned the model 

on wrist radiographs via transfer learning approaches. Training the models on 

general-purpose state-of-the-art datasets such as COCO [119] or PASCAL 

VOC [120] for detecting bone abnormalities is of limited use.  
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Instead of training the model on a non-medical dataset, we have incorporated a 

surface crack dataset with similar crack patterns to wrist bone fractures (Figure 

3.1). The proposed approach does not directly use transfer learning on the wrist 

fracture dataset. The wrist dataset was fine-tuned using a surface crack dataset, 

which had previously been fine-tuned using the state-of-the art COCO dataset. 

This process is pictorially represented in Figure 3.2 along with the description. 

We have used an extension of the faster-RCNN model (mask-RCNN) and 

customized it to localize and segment the fractures.  

3.1.1 Dataset Preparation 

We have created and labeled two distinct datasets. The Surface Crack Dataset 

is the first dataset, and the Wrist Fracture Dataset is the second dataset. The 

surface crack and wrist fracture datasets are referred to as SCD and WFD, 

respectively, in this thesis. We developed both datasets for research purposes 

and expanded the fracture detection task to fracture classification and 

segmentation. Table 3.1 presents a list of publicly accessible datasets labeled 

for classification issues where we can determine whether or not a fracture is 

visible in the images. 

The rest of the chapter is divided into four stages of data preparation. A 

discussion of the novel surface crack and wrist fracture dataset is found in 

Section 3.2.1. Next, the images in the datasets are preprocessed before feeding 

them to the network. Afterward, the images are undergone a labeling process 

followed by augmentation. All the images in our datasets are manually labeled, 

which was time-consuming but less error-prone than the automatic annotation 

software. Finally, multiple copies of the labeled images are generated using 

several augmentation techniques.  

3.1.2 Data collection 

Data collection is the first step, which entails gathering datasets from different 

hospitals or the public domain, followed by dataset labeling. Before feeding a 
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dataset into a classifier, it must be prepared to predict fracture occurrence, its 

labels, and segmented masks. The dataset used for the study comprises self-

collected and labeled Surface Crack Dataset (SCD) and Wrist Fracture Dataset 

(WFD). Instead of pretraining the model on a non-medical dataset, we have 

incorporated a surface crack dataset with similar crack patterns to wrist bone 

fractures.  

a) Surface Crack Dataset (SCD) 

SCD consists of pictures taken from walls, pavements, and roads, created using 

a mobile camera. Real-time images are captured using a mobile camera that can 

include variations like obstacles, shadows, partially visible cracks, background 

clutter, holes, and surface roughness. We worked with 3,000 surface crack 

images (1044 pavements, 1045 walls, and 911 roads) that we labeled for the 

presence of cracks. The dataset is manually annotated for the two distinct tasks 

of object detection and instance segmentation. The dataset is labeled by tracing 

a bounding box around the areas of the image's crack. When using the instance 

segmentation technique, a segmented mask is created that delineates the edge 

of the polygonal crack. Figure. 3.3 shows an example of original and annotated 

images displaying the bounding box and segmented mask around the cracks.  

 

Figure 3.1 The crack patterns in the wrist fracture dataset and the surface crack 

dataset are comparable 
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Figure 3.2 Knowledge transfer from COCO dataset to the wrist fracture dataset. 

Table 3.1 A dataset of publicly accessible bone X-ray images that could be used to 

identify fractures. 

S No. Name Source 

1 Stanford ML group 

MURA: For research purposes, a dataset of 40,561 bone X-ray 

images, including elbow, finger, hand, humerus, forearm, 

shoulder, and wrist, is available to the public. Six board-

certified expert radiologists from Stanford Hospital categorized 

the dataset into normal and abnormal cases after labelling it. 

https://stanfordmlgroup.github.io/competitions/mura/ 

2 medpix 

Medpix is an online database of medical images  

https://medpix.nlm.nih.gov/search?allen=true&allt=true&alli=tr

ue&query=fracture 

3 Radiopaedia 

More than 2800 fracture cases with diagnosis details are freely 

available. 

https://radiopaedia.org/search?lang=us&q=fracture&scope=case

s 

4 

IIEST, Shibpur 

Indian Institute of 

Engineering Science 

and Technology 

A diagnosis report compiled from case report forms is available, 

along with X-ray and MRI images of the knee joint. 

http://oldwww.iiests.ac.in/component/content/article/155-

itcategory/3282-medical-image-database 

5 

MOST:  

Multicenter 

Osteoarthritis Study 

(MOST) 

X-ray and MRI images of the knee joint are available, along 

with a diagnosis report compiled from case report forms. 

http://most.ucsf.edu/datadocs.asp  

6              aylward.org 

There are 10,000 chest X-ray images available, along with 

diagnosis information. 

https://nihcc.app.box.com/v/ChestXray-

NIHCC/folder/37178474737  

https://stanfordmlgroup.github.io/competitions/mura/
https://medpix.nlm.nih.gov/search?allen=true&allt=true&alli=true&query=fracture
https://medpix.nlm.nih.gov/search?allen=true&allt=true&alli=true&query=fracture
https://radiopaedia.org/search?lang=us&q=fracture&scope=cases
https://radiopaedia.org/search?lang=us&q=fracture&scope=cases
http://oldwww.iiests.ac.in/component/content/article/155-itcategory/3282-medical-image-database
http://oldwww.iiests.ac.in/component/content/article/155-itcategory/3282-medical-image-database
http://most.ucsf.edu/datadocs.asp
https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/37178474737
https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/37178474737


47 

 

 

Figure 3.3 (a) A sample of the labelled image with a bounding box. 

(b) An illustration of an input image that has been labelled by drawing a segmented 

mask covering only the critical crack regions. 
 

b) Wrist Fracture Dataset (WFD) 

Between February 2019 and March 2020, the radiographs are collected from the 

Government Doon Medical Hospital in Dehradun, India. Under the Ethical 

Conduct in Human Research and Related Activities Regulations, the dataset 

was obtained without revealing the participant's identity or any of their 

demographic information. The wrist bone X-ray images in the dataset totaled 

315 images (296 Distal Radius, 19 Ulna).  

The radiographs were disregarded if a plaster cast was in place, the wrist's 

growth plates had not yet fused, or the study revealed any fracture other than a 

distal radius or ulna fracture. Additionally, images were discarded if a single 

lateral projection could not determine whether a fracture existed or not. A 

radiology specialist labeled the radiographs with more than ten years of 

experience who serves as the Head of Orthopedics at Doon Hospital, Dehradun, 

India.  Two additional Radiologists have been invited to participate in the 

verification of the annotations generated on the images. It was noted that 14 

radiographs were found in disagreement regarding the diagnosis of the 

fractures.  As a result, the dataset was updated to remove these 14 radiographs.  

315 labeled images were finally chosen for training, where 210 wrist 



48 

 

radiographs showed fracture occurrences and 105 wrist radiographs showed no 

fracture, yielding an initial data set. The summary of the dataset used in the 

current work is mentioned in Table 3.2. 

Table 3.2 Summary of the datasets used. 

Dataset 

Type 

No. of 

images 

Dataset 

source 

Type No. of 

cracks 

Labelling technique 

used 

COCO 

dataset 

3,30,000 [119] NA NA NA 

Surface 

Crack 

Dataset 

(SCD) 

3,000 Collected by 

capturing 

surface crack 

images using 

mobile camera 

pavements-

1044, 

 walls-1055, 

and roads-911 

8,241 We manually label all 

the images, creating a 

bounding box and 

segmentation mask 

around the surface crack. 

Wrist 

Fracture 

Dataset 

(WFD) 

315 Collected from 

Hospitals 

Distal Radius- 

296, 

Ulna- 19 

733 An orthopedic surgeon 

labels all the images by 

creating a bounding box 

and segmentation mask 

around the wrist crack. 

3.1.3 Data Preprocessing 

We have performed two separate sets of operations for SCD and WFD datasets, 

the details of which are mentioned in Table 3.3. The finger bone area was 

removed by the radiologists when cropping the region of interest from wrist X-

ray samples. Next, we converted the DICOM images to 24-bit lossless JPEG 

format while making sure the best windowing was chosen under the doctor's 

supervision. Next, the images are undergone a labeling process followed by 

augmentation. The SCD had not undergone any preprocessing steps because the 

captured images were already in JPEG format.  

The wrist fracture and surface crack datasets were provided as the subjects of 

our experiments.  For research purposes, we have created and annotated both 

datasets and expanded the fracture detection task to include fracture localization 

and segmentation. Table 3.4 displays the dataset's origin, split ratio, types of 

data gathered, and annotation process used to categorize the datasets in the 

existing research articles.  
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Table 3.3 Preprocessing techniques applied on the datasets used. 

Dataset  No. of 

images 

Preprocessing techniques 

COCO 

dataset 

3,30,000 The dataset is not processed. Only the pre-trained weights are 

obtained. 

SCD 3,000 
No cropping 

required 

No conversion is 

required since the 

images are already 

in JPEG format 

Images after 

augmentation- 21,000 

14,700 (Train), 4200 

(validation), 2100 (Test) 

WFD 315 

Finger bone 

area and extra 

annotations 

are  removed 

DICOM images are 

converted to 24-bit 

lossless JPEG 

format 

Images after 

augmentation- 2,205 

1543 (Train), 441 

(validation), 221 (Test) 

Table 3.4 The table displays the dataset's origin, split ratio, types of data gathered, and 

annotation process used to categories the datasets. 

Ref 
Bone 

type 

No. of 

images 

Dataset 

split ratio 

Hospital 

Name 

Fracture 

prevalence 

Annotation 

process 

[20], 

2003 
femur 446 

Training 

set- 126 

Test set-

320 

Local 

hospital, 

Singapore 

Not 

available 

Doctors primarily 

used the neck-shaft 

angle of the femur 

as a diagnostic tool. 

[16], 

2004 
femur 432 

Training 

set- 324 

Test set-

108 

Local 

hospital, 

Singapore 

12% in 

training and 

test set 

Not discussed 

[17], 

2004 

femur 432 

Training 

set- 324 

Test set-

108 

 

Local 

hospital, 

Singapore 

12% in  

training and 

test set 

Not discussed 

wrist 145 
Training 

set- 71 
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Test set- 

74 

 

[18], 

2005 

femur 432 

Training 

set 324 

Test set-

108 

 

Local 

hospital, 

Singapore 

12% in  

training and 

test set 

Not discussed 

wrist 145 

Training 

set- 71 

Test set- 

74 

30% in  

training and 

test set 

[19], 

2007 
femur 420 

Training 

set- 200 

Validation 

set- 160 

Test set- 

60 

Local 

hospital, 

Singapore 

12% in  

training , 

validation 

and test set 

Not discussed 

[23], 

2011 
femur 30 

Not 

available 

Biomedica

l research 

center, 

Malaysia 

50% in input 

images 
Not discussed 

[31], 

2011 
tibia 1650 

Training 

set- 650 

Test set-

1000 

 

Not 

available 

60% in  

training and 

62% in test 

set 

Not discussed 

[34], 

2012 
tibia NA 

Not 

available 
Not 

available 

Not 

available 
Not discussed 

[35], 

2013 
hand 98 

Training 

set- 116 

Test set- 

29 

Jordanian 

Royal 

medical 

services, 

Jordan,  

Public 

domain 

50% in input 

images 

Radiology reports 

provide annotations 

for the X-ray 

samples. 

[36], 

2013 

long 

bones 
300 

Not 

available 

Hashemite 

kingdom 

of Jordan, 

public 

domain 

33% in  

training and 

test set 

Medical 

professionals who 

have been consulted 

verify 300 images 

and their labels. 

[58], 

2015 
multiple 145 

Training 

set- 116 

Public 

domain 

Not 

available 
Radiology reports 

provide annotations 
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Test set- 

29 

for the X-ray 

samples. 

[23], 

2017 
pelvis 

Dataset 

collected 

from 

hospital 

is not 

available, 

dataset 

develope

d after 

augment

ation is 

53,278 

Training 

set- 45,492 

Validation 

set- 4,432 

Test set-

3,354 

Royal 

Adelaide 

Hospital, 

SA 

12% in  

training and 

validation 

set, 19% in 

test set 

- Fracture labels 

from radiographs 

are gathered from 

reports from the 

orthopedic surgical 

unit and radiology 

departments. - Only 

7.4% of the dataset 

needs to be 

manually labelled, 

which reduces the 

need for manual 

labelling of the 

entire dataset. 

[32], 

2017 
multiple 100 

Training 

set- 30 

Test set- 

70 

Orthopedic

s 

traumatolo

gy 

hospital, 

Turkey 

Not 

available 

A benchmark 

database is used to 

acquire 100 images.  

[24], 

2018 
wrist 

Dataset 

from the 

hospital 

was not 

available, 

31,590 

were 

created 

after 

augment

ation. 

Training 

set- 28,341 

Validation 

set- 3,149 

Test set 1- 

3,500 

Test set 2- 

1,400 

HSS 

(Hospital 

for Special 

Surgery), 

United 

States 

Not 

available 

A group of 18 

senior orthopedic 

surgeons manually 

annotated 1,35,409 

radiographs, of 

which 1,00,855 

were bone images 

of 11 different body 

parts and 34,990 

were wrist images. 

[25], 

2018 
humerus 1,891 

Training 

set- 40,000 

Test set-

181 

Multiple 

Hospitals, 

Korea 

73% in 

training, 

validation 

and test set 

1,891 images 

gathered from 

various hospitals in 

Korea are divided 

into 4 categories by 

3 experts. 

[26], 

2018 
wrist 1,389 

Training 

set- 8,890 

Royal 

Devon & 

Exeter 

F~50% in 

training, 

- A trained 

radiologist was 

responsible for 
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3.1.4 Data Labelling 

The labeling process, a crucial step in data pre-processing, comes second in 

importance after the dataset collection. Labeling requires annotation of 

radiographs by experienced radiologists, clinicians, or orthopedic surgeons that 

should be done with extreme care; otherwise, it will reflect poor dataset quality 

and might reduce the overall performance of the model [121]. Making a 

complete dataset for any classification activity is difficult because of who is in 

charge of labeling and how long it takes him or her to do it.  If the dataset is 

correctly mapped with exceptional care and precision by a team of experts, a 

classification-based algorithm can accurately predict the outcome. Even though 

every industry faces governance and regulation challenges in data collection, 

data management, and labeling that could take several months to complete, the 

challenges facing the healthcare sector are unique due to the complexity of the 

data and the extremely strict regulations. To address these issues, a health 

Validation 

set- 1111 

Test set- 

1111 

Hospital, 

UK 

validation 

and test set 

selecting the 

appropriate region 

of interest and 

converting the 

images into JPEG 

format. 

- Using radiological 

reports, wrist X-ray 

images are 

categorized into 

fractured and 

healthy categories 

and are confirmed 

by a radiology 

registrar with three 

years of experience. 

[37], 

2018 
tibia NA 

Training 

set- 40 for 

detection 

Test set -

52  for 

classificati

on 

Yangon  

Orthopedic 

Hospital, 

Myanmar , 

radiology 

websites 

Not 

available 
Not available 
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institute may request a waiver of consent from an Institutional Review Board 

(IRB) study, or researchers may process and anonymize DICOM data to remove 

any patient health information.   

The radiologists have utilized LabelMe [122] software to annotate the wrist 

bone images.  The skilled radiologist labels the wrist fractures by tracing a box 

around the fracture.  Drawing a bounding box may not accurately depict the 

shape of the fractures, as it involves non-essential bone areas when the model 

is being trained.  In order to further label each image, a mask is made by drawing 

a more intricate shape, such as a polygon, around the crack.  It locates the 

fracture in the image, detects it, and then builds a segmented mask around it.  

Figure 3.4 illustrates an example of labeled images, including bounding boxes 

and segmentation masks. It can be observed that the segmentation mask 

constructed using the red color improves the fracture patterns' visibility, which 

is used to segment the fractures. A portion of the dataset is made publicly 

available for research to circumvent data collection challenges and wrist 

fracture labeling [118].   

3.1.5 Data Augmentation  

The data was amplified using a data augmentation approach. Several non-exact 

copies or transformations of each image had to be made to accomplish this, 

including the salient features in various orientations, which aided in providing 

the CNN with more training examples. The goal was to more accurately 

represent the wrist radiograph population in the real world so that variables like 

limb size, handedness, and small differences in wrist positioning could be better 

considered. The images are amplified in numbers using the data augmentation 

technique, which employs the transformations selected for SCD and WFD 

datasets (Table 3.5). Finally, the augmented images are divided into three parts 

(train, validation, and test set), having a split ratio of 70%, 20%, and 10% for 

both datasets. An illustration of the outcomes of augmentation on a source 

image from SCD and WFD is shown in Figure 3.6 and Figure 3.7, respectively. 
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Figure 3.4 An example of original images that have been labelled with the aid of a 

segmentation mask (highlighted in red) and a bounding box (highlighted using the 

yellow box). 
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Figure 3.5 An illustration of the effects of augmentation on a SCD input image. 
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Figure 3.6 An illustration of the effects of augmentation on a WFD input image. 
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Table 3.5 Augmentation techniques implemented for SCD and WFD datasets. 

Technique 

applied 

Use SCD WFD 

Crop Aid model generalization with 

various subject translations and 

camera positions, 

30% 0% Minimum 

Zoom, 9% 

Maximum Zoom 

Rotation To make the model resilient to 

object translations and camera 

position, it adds variability to 

position and size. 

-150 and +150, 

900 clockwise 

and 

counterclockwise 

rotations 

Between -9° and 

+9° 

Flip To make it insensitive to object 

orientation. 

Horizontal, 

Vertical  

Horizontal, 

Vertical  

Hue To randomly adjust the colors of the 

input image. 

Between (- 45° 

and + 45°) 

Between (-44° 

and +44°) 

Exposure The brightness of the image is made 

more variable, which helps the 

model become less sensitive to 

changes in lighting and camera 

settings. 

Between (-10% 

and +10%) 

Between (-11% 

and +11%) 

Shear Helps model be more resistant to 

camera and subject pitch and yaw, 

add variability to perspective. 

Not applied ±6° horizontal, 

±16° Vertical 

Saturation Make arbitrary changes to the 

images' color vibrancy. 

Not applied Between (-42% 

and +42%) 

3.2 Conclusion 

The novel surface crack and wrist fracture dataset used in the research are 

discussed. Several stages involved in generating the datasets are data collection, 

preprocessing, data augmenttaion, and data labeling. The wrist radiographs used 

for conducting experiments were collected between February 2019 and March 

2020 from the Doon Hospital in Dehradun, India. The dataset was obtained 

without disclosing the participant's identity or demographic data following the 
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regulations governing Ethical Conduct in Human Research and Related 

Activities.  

The number of wrist fracture images obtained from the hospitals is 315 

consisting of 733 annotations/cracks which is insufficient to generate accurate 

results using deep learning techniques. Therefore we have incorporated state-

of-the-art COCO and self-collected Surface Crack Datasets (SCD) for better 

model generalization. COCO dataset does not include images from medical 

domain, more specifically there are no images which has crack like pattern in 

it. As a consequence, we have developed surface crack dataset. The surface 

crack dataset consists of 3,000 images collected by capturing the minute cracks, 

which has similar patterns as the bone fracture cracks.  

SCD and WFD are both preprocessed before being fed into the network. The 

WFD is cropped to exclude the finger bone regions from the hand X-rays. The 

DICOM image was then converted to the 24-bit lossless JPEG 

format. Following that, the images go through a labeling and augmentation 

process. The radiologists annotated the wrist bone images with LabelMe 

software. Drawing a bounding box may not accurately depict the shape of the 

fractures because it includes non-essential bone areas when training the model. 

A mask is created to label each image further by drawing a more intricate shape, 

such as a polygon, around the crack. A portion of the dataset is made publically 

available for research to minimize difficulties with data collection and wrist 

fracture labelling. [118]. 
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CHAPTER -4 

4 A NOVEL METHOD DEVELOPED FOR FRACTURE 

LOCALIZATION AND SEGMENTATION 

4.1 Introduction 

Deep learning techniques have made computer-aided design (CAD) systems 

increasingly capable of assisting radiologists in medical settings.  Kim et al. [26] 

used lateral wrist radiographs to retrain the Inception-v3 network and create a 

model to ascertain if a new case is fractural. Raghavendra et al. [106] developed 

a unique CNN classification model to identify thoracolumbar fractures 

automatically. The automatic classification of osteoporotic vertebral fractures 

was studied by Tomita et al. [107] utilizing a deep residual network (ResNet) 

and a long short-term memory (LSTM) network. A straightforward binary 

classification model was trained on MURA [103], a sizable dataset of 

musculoskeletal radiographs made up of 40,895 radiographs, by Rajpurkar et 

al. using a 169-layer DenseNet. A CNN was trained to recognize wrist fractures 

using lateral and posteroanterior radiographs by Ebsim et al. [108]. England et 

al. [109] employed deep CNN to find traumatic pediatric elbow joint effusion. 

Urakawa et al. [110] reported that their fine-tuned model detects 

intertrochanteric hip fractures by using VGG-16 to analyze whether the 

proximal femurs cropped from an anterior-view hip radiograph are fractured or 

non-fractured. Badgeley et al. [111] employed Inception-v3 to forecast hip 

fractures by confounding patients and using healthcare information. Using 

AlexNet and GoogLeNet, Adams et al. correctly identify femoral neck fractures 

in X-rays with a 94.4 percent accuracy rate [112]. 

Real-world object detection is a challenging problem with two major 

responsibilities. In order to distinguish between foreground and background 

objects and apply the relevant object class labels, the detector must first solve 

the recognition problem. The detector must also assist in solving the localization 

issue, which necessitates assigning exact bounding boxes to diverse objects. 
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To illustrate the efficiency of computer-aided identification and classification 

of calcaneus fracture location in CT images, Pranata et al. combine a ResNet-

50 with a SURF approach [113]. Faster-RCNN and Inception-v4 were utilized 

by Gan et al. to detect distal radius fractures, and the suggested network 

performed better than orthopedists [114]. In order to locate wrist fractures in 

radiographs, Lindsey et al. created extensions of the U-Net architecture; a 

controlled experiment shows that the help of the deep learning model 

significantly improves emergency medicine physicians' diagnostic accuracy 

[24]. In order to locate and diagnose thighbone fractures in X-ray images with 

an Average Precision (AP) of 82.1 percent, Guan et al. [115] created a novel 

CNN with dilated convolutions. 

Recently, generic object detection has gained popularity attributable to single-

stage and two-stage detectors. Fast R-CNN [85] and faster-RCNN [86], the first 

two-stage detectors, were introduced by the region-based convolutional neural 

network (R-CNN), which progressed the developments. In order to increase the 

effectiveness of detectors and enable end-to-end training of the detectors, faster-

RCNN introduced a Region Proposal Network (RPN). Numerous techniques to 

improve faster-RCNN from various angles were introduced following this 

significant milestone. For instance, FPN [116] reduced scale variation using the 

architecture of a multi-scale feature pyramid. Cascade RCNN [117] enabled 

faster R-CNN to be extended to a multi-stage detector. The most successful 

generic object detection method to date is the two-stage detector, widely applied 

across numerous sectors. 

Researchers have been using deep learning algorithms to recognize the fractures 

on bone X-ray images for fracture classification, detection, and instance 

segmentation. Regardless of where the cracks are in the images, the 

classification algorithms assist in determining whether they are present or 

absent. Finding the exact location of fractures in an image requires localization 

that goes one step further with object classification. Instance segmentation is a 

technique that uses a bounding box to mask the objects' exact shape rather than 
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their physical location. These tasks combine classification, localization, and 

segmentation tasks into a single output that is a polygon mask encircling the 

defined target. Figure 4.1 displays a sample of image, annotated for object 

classification, localization and segmentation problem. According to our 

knowledge, this study is the first one to concentrate on creating a segmentation 

mask around the class labels to detect wrist fractures. Numerous studies have 

been based on problems with fracture classification that could only identify a 

fracture in an image without identifying its location. This task was expanded to 

include finding the image fractures. Our study also segmented the fractures 

using the instance segmentation method. 

 

Figure 4.1 A sample of image, annotated for object classification, object localization 

and instance segmentation problem [132]. 

The following portions of this chapter are organized as follows. Section 4.2 

discusses the suggested methodology for training the model, divided into three 

phases. Section 4.2.1 addresses the proposed feature extraction methodology for 

fracture detection, followed by Section 4.2.2, which details fracture localization 

and segmentation in wrist bones. The conclusion is stated in Section 4.3. 

4.2 Proposed Methodology 

We have used Instance segmentation, which localize and segments every fracture 

in the image by assigning a label to each image pixel. This study focuses on 

constructing the segmentation mask around the class labels to detect wrist 
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fractures. Instance segmentation is the integration of faster-RCNN and semantic 

segmentation. The intuition behind involving segmentation along with the 

localization of wrist fractures is better visualization of the shape of the fractures. 

It has been observed that the fracture shape is extended in vertical and horizontal 

direction in majority of the X-ray samples collected.  The automatic localization 

of the fractures is improved by creating a segmented mask along with the 

bounding box to exactly locate the fractures and its shape. This process 

eliminates the unessential bone area included in the bounding box during model 

training thus providing better results. The proposed methodology adopted for 

training the model is divided into three phases I, II, and III. 

Phase I 

Transfer learning is employed in the proposed work due to the limited 

availability of the wrist fracture dataset in the public domain [105]. By drawing 

on prior knowledge of similar tasks, transfer learning with convolutional neural 

networks aims to enhance performance on a new task. It has significantly 

improved medical image analysis by overcoming data scarcity and saving time 

and hardware resources. The number of wrist fracture images acquired from the 

hospitals is 315 consisting of 733 annotations/cracks, which is insufficient to 

generate accurate results using deep learning techniques. We have applied the 

transfer learning concept since the pre-trained weights can be transferred from 

one domain to another [123]. The first phase uses the state-of-the-art object 

recognition and segmentation dataset MS COCO (Microsoft Common Objects 

in Context) [119]. There are 3,28,000 photos in the COCO dataset of complex 

daily objects, including bottles, cars, chairs, cows, dogs etc. The photos contain 

2.5 million instances with labels and 91 different object types. The COCO 

dataset is used because it consists of 2.5 million images, which helps in better 

model convergence and generates accurate results when applying deep learning 

techniques. 

In phase I, the pre-trained weights for the COCO dataset trained on the mask-

RCNN architecture built on Feature Pyramid Network (FPN) and ResNet-50 
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architecture are acquired from the publicly available resources [124]. These 

weights are utilized for fine-tuning the surface crack dataset in Phase II.  

Phase II 

The COCO dataset does not include images from the medical domain; more 

specifically, there are no images with a crack-like pattern. Consequently, we 

have developed a new-found surface crack dataset (SCD) dataset. The dataset 

consists of 3,000 images of pavements, walls, etc., having similar patterns as 

bone fractures illustrated in Figure 3.1. Transfer learning is utilized in the 

proposed methodology to transfer the knowledge from the non-medical 

(COCO) dataset to the medical domain dataset via surface crack images. This 

technique is efficacious for the limited dataset, where we can effectively apply 

pre-acquired knowledge for executing a task.  

Layered architectures used in deep learning systems and models allow for the 

learning of various features at different layers.  The final output is obtained by 

connecting these layers to a final layer. We can use a pre-trained network 

without its final layer as a fixed feature extractor for different tasks due to this 

layered architecture. The inductive learning method is exemplified by deep 

learning models. To infer a mapping from a set of training instances is the goal 

of inductive learning methods. The fundamental concept is to simply use the 

weighted layers of the pre-trained model to extract features without adjusting 

the weights of the layers while training with the new dataset [15]. 

Since COCO and wrist fracture dataset are vastly different, using COCO 

characteristics for fracture detection is less effective. As a result, we included 

surface crack images in place of directly transferring the pre-trained weights 

from the COCO dataset to fine-tune the model on the wrist fracture dataset. 

Figure 4.2 illustrates knowledge transfer from the COCO dataset to the WFD 

through SCD. A schematic diagram representing the overall steps involved in 

fracture detection is shown in Figure 4.3. In phase II, an inductive transfer 

learning mechanism is employed because the source (COCO dataset) and 

destination domains (Surface crack dataset) are different. The learning task 
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domains of the COCO dataset and SCD are also different. Therefore, the surface 

crack images are fine-tuned to accurately detect and segments cracks in the 

input images, based on equation 4.1. 

                                    𝑖𝑓           𝐷𝑠 ≠ 𝐷𝑡 𝑜𝑟 𝑇𝑠 ≠ 𝑇𝑡                                             4.1   

It improves the learning of 𝑓𝑡(. ) in 𝐷𝑡 by applying the knowledge in 

𝐷𝑠 𝑎𝑛𝑑 𝑇𝑠, where 𝑇𝑠 ≠ 𝑇𝑡      

The source domain is 𝐷𝑠, and the source domain's learning task is 𝑇𝑠. 𝑇𝑡 is the 

target domain's learning task, and 𝐷𝑡 is the target domain. The predictive 

function is 𝑓𝑡(. ) 

Phase III 

Phase III utilizes a transductive transfer learning mechanism where the source 

(Surface crack dataset) and destination domains (wrist fracture dataset) are 

different. The learning task of both the domains is same, which is to identify 

cracks in the images, therefore equation 2 is applicable for identifying fractures 

in wrist images.  

                                                     𝑖𝑓      𝐷𝑠 ≠ 𝐷𝑡 𝑜𝑟 𝑇𝑠 = 𝑇𝑡                                   4.2 

It improves the learning of 𝑓𝑡(. ) in 𝐷𝑡 by applying the knowledge in 

𝐷𝑠 𝑎𝑛𝑑 𝑇𝑠, where 𝑇𝑠 = 𝑇𝑡     

The source domain is 𝐷𝑠, and the source domain's learning task is 𝑇𝑠. 𝑇𝑡 is the 

target domain's learning task, and 𝐷𝑡 is the target domain. The predictive 

function is 𝑓𝑡(. ) 
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Figure 4.2 Knowledge is transferred from datasets in non-medical domains (COCO) 

to WFD using the transfer learning methodology. 

 

Figure 4.3 A schematic diagram representing overall steps involved in fracture 

detection 
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4.2.1 Feature extraction for fracture detection in wrist bones 

The overall architecture of wrist fracture detection is divided into three sub-

architectures: the Backbone network, the Region Proposal Network (RPN), and 

the Region of Interest Align (RoIAlign), depicted in Figure 4.4. The task of 

extracting features from the input image takes place in the Backbone 

architecture, which comprises a top-down and bottom-up pathway, illustrated 

in Figure 4.5. 

 

Figure 4.4 Overall architecture for wrist fracture detection is presented. 

The in-depth architecture of the top-down and bottom-up pathways is illustrated 

in Figure 4.6. It consists of an input stem (1), residual layers (2), lateral 

convolution layers (3), output convolution layers (4), and a modified last-level 

concatenated layer (5).  

A convolutional network intended for feature extraction is deployed in the top-

down pathway. The input stem and residual layers of the top-down pathway are 

inspired by ResNet-50 architecture [63]. To identify large and small objects, we 

have created a pyramid using the same image at various scales. The bottom-up 

pathway comprises lateral convolution and output convolutional layers. The 

bottom-up pathway is inspired by the Feature Pyramid Network (FPN) [116], 

which combines low-resolution, semantically powerful features with high-

resolution, semantically weak features. The spatial resolution of the image 

reduces as we advance deeper into the CNN architecture, whereas the semantic 
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value for each layer increases as more high-level structures is detected. The 

output of this layer are the features generated at different scales: (1/4) scale-> 

P2, (1/8) scale-> P3, (1/16) scale-> P4, (1/32) scale-> P5, (1/64) scale-> P6.  

 

Figure 4.5 A layout of the top-down and bottom-up pathway is illustrated. 

The input stem uses a Conv layer with kernel size 7 and stride equal to 2 to 

downsample the input image. To achieve high computational speed, the number 

of parameters must be reduced. As a result, following the convolution operation, 

the input stem reduces the size of the input image by using the maxpool layer 

with kernel size of 3 and stride value of 2. The input stem returns a feature map 

tensor with the dimensions (B, 64, H / 4, W / 4), where B represents batch size 

and H and W represent Height and Width, respectively. 
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Figure 4.6 The indepth architecture of the top down and bottom up pathway is 

illustrated. It consists of an input stem (1), residual layers (2), lateral convolution 

layers (3), output convolution layers (4), and a modified last-level concatenated layer 

(5). 

The residual layers consist of b1, b2, and b3 blocks, where each block consists 

of three convolution layers, the details of which are mentioned in Table 4.1 

Architecture level details used in the proposed methodology. The ResNet blocks 

(2-5) consist of a combination of residual layer blocks (b1, b2, b3). The first 

block (b3) of stages (3-5) in the ResNet architecture downsamples the feature 

map. A shortcut convolution layer is added in b2 and b3 blocks to match the 

input and output channels at the first block of the ResNet stage (2-5). The 

identity shortcuts add the input and output features in b2 and b3. At block 3, a 

shortcut connection is added with stride=2 to match the input and output 

channels. 
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The feedforward feature maps are calculated from the ResNet-50 architecture 

through a top-down layout. The output feature maps generated from ResNet 

blocks have the format- 

res5->  [1, 2048, H/32, W/32]   # stride = 32 

res4->  [1, 1024, H/16, W/16]   # stride = 16 

res3->  [1, 512, H/8, W/8]          # stride = 8 

res2 -> [1, 256, H/4, W/4]  # stride = 4  

The res(2-5) block has [256, 512, 1024, 2048] output channels. ResNet blocks 

(2–5) extract features, which are then sent to 1x1 lateral convolutional layers to 

produce feature maps with 256 channels. To match the dimensions of the feature 

maps created by the previous layer, the ResNet block feature map is upsampled 

by a factor of 2. The output of ResNet stage 4 includes the 256-channel feature 

map from the lateral Conv layer of ResNet stage 5, which was added by the 

nearest neighbor upsampler. The resulting feature map is then subjected to the 

3 x 3 output convolution, yielding P4. The same operation was carried out in an 

upward direction three times to create the P3 and P2 feature maps. 

The Adaptive Concat Pooling (ACP) layer is then employed to concatenate the 

Adaptive Average Pooling (AAP) and Adaptive Max Pooling (AMP) layers to 

produce the P6 output. The activation from ResNet-50's last convolution layer 

is max-pooled to the subsequent fully connected layer in the original ResNet-

50 architecture. The proposed architecture preserves the maximum and average 

activations of the last convolution layer to enable the neural network to select 

the optimal approach without the requirement for individual experimentation. It 

has been found that the last layer's H x W feature map's maximum value 

performs better than the average and vice versa. The AAP and AMP layers are 

combined with the ACP layer in the revised model. Three different pooling 

layers are used as a transitional phase to connect the convolution layer to the 

fully connected layers. Our research preserves the maximum and average 
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activations from the preceding convolution, offering the model knowledge of 

both the approaches and enhancing performance. 

4.2.2 Fracture localization and segmentation  

The basic idea of this sub-architecture is to identify regions or areas with a 

possibility of fracture presence in the image. Once we identify the areas, we 

label them as foreground, background, and ignored class which is given to a 

CNN for classification and regression. The ground truth box annotations 

indicating the location and size are mapped with the feature maps generated in 

the backbone architecture. We have utilized a multi-scale network proposed in 

the backbone architecture to detect small and large cracks in the image. The 

smaller objects are detected by p2 and p3, while p4, p5, and p6 detect larger 

objects.   

The sub-architecture in this stage comprises of two stages- RPN and RoIAlign 

layer [101]. The detailed architecture of RPN is depicted in Figure 4.7. 

 

Figure 4.7 The detailed architecture of RPN is depicted. 
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RPN has two major components; the RPN head with neural network 

functionalities and the remaining layers with non-neural network 

functionalities. RPN applies a sliding window on the predicted feature maps to 

identify the objectness score (has an object or not) and the bounding box of the 

object. RPN head comprises three convolutional layers conv1, conv2, and 

conv3. The backbone architecture's feature maps (p2 – p6) are provided as input 

to the RPN head, generating the objectness logits and anchor deltas. The 

objectness logits represent the probability of object existence, while the anchor 

delta represents the relative box shape to anchors. 

pred_obj = [B, 3 ch, Hi, Wi] 

pred_anchor = [B, 3×4 ch, Hi, Wi] 

where B is batch size, Hi, and Wi correspond to the feature map sizes of P2 to 

P6. 

Anchor generation is the next step toward object detection, which helps connect 

the pred_obj and pred_anchor to the ground truth boxes. A series of bounding 

boxes with a predetermined height and breadth are called anchors. There are 

nine anchors in the faster-RCNN's default configuration at a point of an image. 

However, we have utilized three anchors of various sizes to identify fracture 

cracks. Anchor sizes of (32, 64, 128, 256, and 512) are used for (p2-p6) feature 

maps generated from the backbone architecture. The aspect ratio of 2:1, 1:1, and 

1:2  is set for defining the shape of the anchors. For example, the p2 feature map 

has a 32x32 dimension with 1:2, 1:1, and 2:1 aspect ratios resulting in three 

anchors displayed in Figure 4.8.  

 

Figure 4.8 Cell anchors for the P2 feature map with the aspect ratios of 1:2, 1:1, and 

2:1. 
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Similarly, l2 anchors are generated for p3, p4, p5, and p6 feature maps. The 

anchors generated for p2-p6 feature maps are placed on the corresponding 

predicted feature maps (p2-p6). The size and stride of the anticipated feature 

map, p2, are (150x200) and 4, respectively. Next, each grid cell is attached with 

the three anchors, creating 150x200x4 anchors. The anchor generation process 

is repeated for the remaining feature maps, yielding a total of 1,20,015 anchors. 

The Intersection over Union (IoU) is computed using the generated anchors and 

the ground truth boxes. The objective is to find anchors similar to the ground 

truth boxes out of 1,20,015 anchors using the concept of IoU. We have defined 

a threshold of 0.7 to label the anchor as background, foreground, or ignored. 

Foreground anchors possess higher than 70% overlaps with ground truth boxes. 

The generated anchors and the ground truth box are allocated as background if 

the IoU is less than a specified threshold (30%). It is considered ignored if the 

percentage is between 30% and 70%. 

Ground truth boxes and foreground anchor labels have similar shapes, and the 

network has been taught to properly detect the precise location and shape of the 

ground truth boxes. The ground truth box annotations are used in this layer to 

calculate the loss. The annotation data consists of a class label that identifies the 

presence or absence of a fracture and a box parameter indicating the location 

and size of the bounding box containing a fracture. The ground truth box labels 

are required for detecting the fractures in this layer. The four regression 

parameters mentioned in the equations 3-6 are defined, which are required to 

identify the exact location of the ground truth boxes.  

                                                              𝛥𝑥 =  
(𝑋 − 𝑋𝑎)

𝑊𝑎
                                                 4.3 

   

                                                           𝛥𝑤 = 𝑙𝑜𝑔(𝑊
𝑊𝑎⁄ )                                              4.4 

  4.4 

                                                           𝛥𝑦 =  
(𝑌 − 𝑌𝑎)

𝐻𝑎
                                                   4.5 
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                                                               𝛥ℎ = 𝑙𝑜𝑔(𝐻
𝐻𝑎⁄ )                                             4.6        

The next step is to resample the boxes for calculating the loss. The resampling 

is essential as the number of anchors generated per image is 1,20,015, where 

most anchors are background. In our experiments, less than 100 anchors are the 

foreground, less than 1000 anchors are ignored, and the remaining are 

background. Next, the loss is calculated on the predicted objectness maps and 

the ground truth labels.  Localization loss or l1 loss is computed by ignoring all 

background labels. It is applied to the grid points of the predicted objectness 

maps where the ground truth score is 1. Objectness score or binary cross entropy 

loss is applied to the grid points of the predicted objectness maps where the 

ground truth score is 1 and 0. Finally, 1000 region proposal boxes are selected 

by applying the predicted anchor deltas to the corresponding anchors and 

sorting them based on the objectness score individually for (p2-p6) feature 

maps. Next, Non-Max Suppression (NMS) is applied to selected top-scored 

1000 boxes.   

4.2.2.1 Region of Interest Align (RoIAlign) 

The architecture comprises two parts: RoI head and RoI pool. The detailed 

architecture of RoI head is depicted in Figure 4.9. 

RoI head accept as inputs ground truth boxes, 1000 region proposal boxes, and 

feature maps from the backbone architecture (p2-p5). To accelerate the training 

process in RoI head, the ground truth boxes are included in the proposal boxes. 

Afterward, these are categorized as foreground or background based on the IoU 

calculation threshold. The foreground and background samples are resampled 

to encounter the imbalance dataset problem. In RoI pooling, the proposal boxes-

specified feature maps are cropped into rectangular regions of interest. The RoI 

is cropped from the feature maps by allocating proposal boxes to the relevant 

feature maps using the equation 7. 
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𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑙𝑒𝑣𝑒𝑙 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 = 𝑓𝑙𝑜𝑜𝑟 (
4 + 𝑙𝑜𝑔2 √𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙_𝑏𝑜𝑥_𝑎𝑟𝑒𝑎2

224
)       4.7 

 

Figure 4.9 Detailed architecture of the RPN is depicted.  

The region of interest (RoIs) is accurately cropped by the proposal boxes 

consisting of floating point coordinates. The detectron2 [125] package modifies 

the RoIAlign technique from the mask-RCNN architecture to crop the region of 

interest precisely. The RoIAlignv2 is a modified version of the RoIAlign that 

computes the neighboring pixel value by deducting the half-pixel offset from 

RoI coordinates. This method has overcome the disadvantages of choosing a 

slightly off-aligned pixel value while using bilinear interpolation. The resulting 

tensor after cropping the RoIs from corresponding feature maps (p2- p5) has the 

size of [N × B, 256, 7, 7], where N x B is number of RoIs across the batch, 256 

is the number of channels, seven corresponds to the height and width of the RoI.  

4.2.2.2 Box head and mask head 

The box head consisting of two fully connected layers receives an input of a 

flattened tensor of [B, 256,7, 7 = B, 256x7x7=12,544] channels. The output 
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from this layer is the classification score and bounding box predictions. Next, 

the classification and localization loss is calculated during training. 

A parallel layer is added with the existing object detection framework to 

generate the mask around the cracks. The output obtained from the box head 

consists of a class label and the bounding box parameters. The RPN stage is 

adopted here to perform the pixel-to-pixel alignment, followed by extracting 

features using RoI pool and RoIAlignv2 from each bounding box. A multi-task 

loss is calculated for each region of interest obtained, which is calculated using 

equation 4.8.  

                                                      𝐿 = 𝐿𝑜𝑏𝑗 +  𝐿𝑙𝑜𝑐 + 𝐿𝑚𝑎𝑠𝑘                                   4.8 

The sub-architecture in this layer consists of a convolutional layer to extract 

features, generating pixel-to-pixel mapping. Next, another convolutional layer 

is added, followed by RoIPool and RoIAlign layers to obtain the bounding box 

for the classification and regression task.  

Table 4.1 Architecture level details used in the proposed methodology 

Backbone architecture- Feature Extraction 

L
a

y
er

s 

Input Output 

(1
) 

in
p

u
t 

st
em

  

Conv1  

(kernel=7x7, stride= 2), 

 

batchnorm layer, 

ReLU, 

Maxpool layer (kernel=3x3, stride= 2) 

tensor with 

dimensions-  

(B, 64, H / 4, W 

/ 4). 

(2
) 

re
si

d
u

a
l 

la
y

er
s 

res2 stage, 1/4 scale 

block b2 (stride=1, with 

shortcut conv) 

block b1 (stride=1, w/o  

shortcut conv) × 2 

b1- 

stride=1, 

No shortcut 

conv 

[Conv1 

(kernel=1x1), 

Conv2 

(kernel=3x3), 

Conv3 

(kernel=1x1)], 

stride=1 

 

 

res2 = [1, 256, 

H/4, W/4], 

stride = 4 

 res3 stage, 1/8 scale 
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block b3 (stride=2, with 

shortcut conv) 

block b1 (stride=1, w/o  

shortcut conv) × 3 

b2- 

stride=1,  

identity 

shortcuts  

[Conv1 

(kernel=1x1), 

Conv2 

(kernel=3x3), 

Conv3 

(kernel=1x1)], 

stride=1 

res3 =  [1, 512, 

H/8, W/8, stride 

= 8 

 

res4 =  [1, 1024, 

H/16, W/16], 

stride = 16 

 

res5 =  [1, 2048, 

H/32, 

W/32], stride = 

32 

 

 

 

res4 stage, 1/16 scale 

block b3 (stride=2, with 

shortcut conv) 

block b1 (stride=1, w/o  

shortcut conv) × 5 
b3- 

stride=2,   

identity 

shortcuts  

Conv1(kernel=1x

1), stride=2 

[Conv2 

(kernel=3x3), 

Conv3 

(kernel=1x1)],  

stride=1 

res5 stage, 1/32 scale 

block b3 (stride=2, with 

shortcut conv) 

block b1) (stride=1, w/o  

shortcut conv) × 2 

(3
-5

) 
la

te
r
a

l,
 o

u
t,

 &
 c

o
n

ca
te

n
a

te
d

 l
a

y
er

s 
 

res2 = [1, 256, H/4, W/4], 

stride = 4 

 

res3 =  [1, 512, H/8, W/8, 

stride = 8 

 

res4 =  [1, 1024, H/16, 

W/16], stride = 16 

 

res5 =  [1, 2048, H/32, 

W/32], stride = 32 

 

Lateral conv 

layers: (res2-

res5)→(1x1 

conv layer) x4, 

 

Upsampler: 

(F.interpolate 

with nearest 

neighbor), 

 

Concatenated 

Layer: 

ACP = AAP + 

AMP 

p2 = [1, 256, 

150, 200], stride 

= 4  

p3 = [1, 256, 75, 

100], stride = 8 

p4 = [1, 256, 38, 

50], stride = 16 

p5 = [1, 256, 19, 

25], stride = 32 

p6 = [1, 256, 10, 

13], stride = 64 

Region Proposal Network (RPN) 

(1
) 

R
P

N
 H

ea
d

 

p2 = [1, 256, 150, 200],  

p3 = [1, 256, 75, 100],  

p4 = [1, 256, 38, 50],  

p5 = [1, 256, 19, 25], 

p6 = [1, 256, 10, 13] 

Conv1 (kernel=3×3, 256 -> 256 ch),  

pred_obj_Conv2 (kernel=1×1, 256 -> 

3 ch), 

pred_anchor_Conv3(kernel=1×1, 256 

-> 3×4 ch). 

for (p2-p6) 

feature maps- 

pred_obj = [B, 3 

ch, Hi, Wi] 

pred_anchor = 

[B, 3×4 ch, Hi, 

Wi] 
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(2
) 

a
n

ch
o

r 
g

en
er

a
ti

o
n

 Anchor sizes for (p2-p6) 

feature maps- 

p2 =32 

p3= 64 

p4= 128 

p5= 256 

p6= 512 

Aspect ratio= [0.5, 1.0, 

2.0] 

Anchors generated for (p2-p6) feature 

maps- 

p2=150x200x3=90,000 

p3=75x100x3=22,500 

p4=19x25x3=5,700 

p5=19x25x3=1,425 

p6=10x13x3=390 

total anchors 

generated=  

p2+p3+p4+p5+

p6= 1,20,015 

(3
) 

ca
lc

u
la

te
 a

n
ch

o
r 

d
el

ta
s 

Total anchors generated= 

p2+p3+p4+p5+p6= 

1,20,015 

Label the 

generated 

anchor as- 

if IoU>=70%, 

foreground 

elif IoU<=30%, 

Background 

elif IoU>30%  

and IoU<70%, 

Ignored 

Calculate anchor 

deltas for 

foreground labels 

– 

(Δx, Δy, Δw, Δh) 

Calculate - 

l1 loss 

objectness loss 

 

proposal_boxes: 

1,000 

objectness_logit

s: 1,000 

RoI calculation 

b
o

x
 h

ea
d

 a
n

d
 p

o
o

l 

1000 proposal boxes + 

(p2-p5) feature maps + 

ground truth boxes 

Proposal boxes 

as labeled based 

on the IOU 

value, 

Foreground and 

background 

boxes  are 

resampled 

RoIAlignv2 is 

used to accurately 

crop the Region of 

interest 

tensor size of the 

cropped RoIs 

from (p2-p5) 

feature maps- 

[N × B, 256, 7, 

7] 

 

 

box head and mask head 

(1
) 

b
o

x
 h

ea
d

 cropped RoIs from (p2-

p5) feature maps- 

[N × B, 256, 7, 7] 

FC_Layer1(in_features=12,544, 

out_features=1024, bias=True) 

FC_Layer2(in_features=1024, 

out_features=1024, bias=True 

class label , 

bounding-box 

offset 

 

(2
) 

m
a

sk
 h

ea
d

 

(3
) 

H
ea

d
 cropped RoIs from (p2-

p5) feature maps- 

[N × B, 256, 7, 7] 

Warped feature 

vectors  for each 

RoI is passed to 

the conv layers 

RoIAlignv2- 

accurately crop the 

RoI having 

floating-point 

values. 

class label , 

bounding-box 

offset, 

object mask 
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4.3 Conclusion 

This study focuses on constructing the segmentation mask around the class 

labels to detect wrist fractures using the integration of faster-RCNN and 

semantic segmentation. Transfer learning is utilized in the proposed 

methodology to transfer the knowledge from the non-medical (COCO) dataset 

to the wrist-fracture (medical-domain) dataset via surface crack dataset.  The 

first phase of the proposed methodology uses the COCO dataset for genertaing 

the pre-trained weights, which are then used in phase II where surface crack 

dataset is used to generate high level features like cracks in the images. Finally, 

the model is fine-tuned on wrist fracture dataset by utlizing the knowledge 

acquired from phase II.  

The feature maps are retrieved from the input image using a modified feature 

pyramid network involving ResNet-50 architecture as convolution neural 

network. The details of extracting features from the input image is mentioned 

in the top-down and botton-up pathway of the backbone sub-architecture of the 

proposed model. The top-down pathway meant for feature extraction comprises 

of input stem and residual layers, whereas bottom-up pathway is meant for 

constructing semnatically strong features by merging the feature maps extracted 

from the top-down pathway. The feature pyramid network integrates low-

resolution, semantically robust features with high-resolution, semantically weak 

features.  Next, the task of fracture localization and segmentation is adopted 

from the mask-RCNN [86] model, consisting of three stages-RPN (Region 

Proposal Network), RoIAlign layer, and box-mask head.  
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CHAPTER -5 

5 EXPERIMENTAL RESULTS  

5.1 Introduction 

The neurons are the processing nodes in a deep neural network (DNN) that 

operate on the data as it moves through the network. Each node in the DNN has 

a weight value associated with training that indicates to our model how much 

of an impact it will have on the prediction outcome. These weights illustrate a 

parameter in the model [126]. Hyperparameters are the parameters that control 

the training. Configuring a Deep Neural Network (DNN) includes, for example, 

deciding how many hidden layers of nodes to use between the input and output 

layers and how many nodes each layer requires. These variables have no direct 

relationship to the training data but are configuration variables. Typically, 

hyperparameters remain constant throughout a task, while parameters change 

during a training job [126]. 

The process of selecting the best set of hyperparameter values to employ when 

training a model using the tuned algorithm on any given data set is known as 

parameter tuning. The model's performance is optimized using a set of 

hyperparameters, which minimizes a specified loss function, and produces 

better results with fewer errors.  It should be noted that the learning algorithm 

optimizes the loss based on the input data and seeks the best solution within the 

constraints. However, hyperparameters precisely define this configuration. Our 

predicted model parameters will not give optimal results if our hyperparameters 

are not properly tweaked to minimize the loss function. The accuracy or 

confusion matrix will be worse in reality [127]. 
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5.2 Hyperparameters Tuning 

To achieve the best possible outcomes, hyperparameters must be tuned for 

surface crack identification and fracture detection. The proposed model is tuned 

by selecting the appropriate parameters and hyperparameters significant for 

analysis and experimentation. The parameters, such as the number of filters, 

filter size, activation function, pooling size, etc., chosen while training the 

model at sub-architecture levels are discussed in the previous chapter. The 

learning strategy adopted and weight initialization techniques involved with the 

motive to minimize the cost function is discussed in this section.  

The proposed methodology involving Phase I, II, and III adopted for training 

the model is explained in depth in section 4.2. The pre-trained weights of the 

COCO dataset obtained from Phase I of the proposed methodology are 

transferred to Phase II for surface crack detection. The weight file from the pre-

trained mask-RCNN model is incorporated rather than applying random weight 

initialization techniques. The Backbone sub-architecture meant for extracting 

features from the input image is inspired by the mask-RCNN model, where three 

alternatives of the CNN architectures were available: ResNet50, ResNet101, 

and ResNeXt101 [128]. 

The trade-off between accuracy and training time motivated us to select 

ResNet50 as the feature extractor because ResNet50 trains faster than the later 

models because it comes with several open-source pre-trained weights for large 

datasets like COCO. ResNet50 architecture has significantly shortened the 

training period for various instance segmentation approaches. ResNet101 and 

ResNext101 architectures will take longer to train because they have more 

layers. However, they will likely perform better if no pre-trained weights are 

utilized and fundamental variables like the number of epochs and learning rate 

are correctly adjusted. The best method for real-world item recognition is to 

start with pre-trained weights, such as COCO with ResNet50, and assess the 

model's performance. The models pre-trained on the COCO dataset operate 
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faster and more effectively. The ResNet101 and ResNext101 architectures can 

be investigated if accuracy is crucial and high computing power is available. 

We used the notion of freezing and unfreezing certain layers of the proposed 

architecture. While the model is being trained, a few layers of the backbone 

architecture for feature extraction are frozen. Specifically, the early layers of the 

ResNet-50 architecture, which is utilized as a feature extractor, are frozen, so 

the weights for the model are not modified during backpropagation. The first 

layer of CNN is intended to detect simple gradients of the line, the second layer 

to find simple shapes, and the third layer to come across combinations of lines 

and shapes. These early layers are meant to obtain general characteristics. On 

the other hand, the latter layers concentrate more on the particular task at hand, 

such as identifying the image's crack patterns. 

It is unlikely to generate better features at the initial layers while updating the 

gradients at the same learning rate because the features predicted by the initial 

layers of a CNN architecture will be the same irrespective of the dataset used. 

The source and target domains in Phase I and Phase II are different, where Phase 

I utilizes COCO dataset as opposed to Phase II, which uses a surface crack 

dataset. Therefore, we have not trained the initial layers of the backbone 

architecture in Phase II. The results are saved, and the model is loaded in Phase 

III to detect wrist fractures. The source and domain datasets are different, but 

the task is similar in Phase II and Phase III, where both stages aim to identify 

the cracks in the input image. Therefore, the model is trained using a surface 

crack weight file without freezing any layer in Phase III.  

The network updates the parameters at a differential learning rate using a 

learning rate finder curve [129]. This method employs different learning rates 

for deep neural architecture segments [130]. The learning rate gradually rises 

from an exponentially low value (10-7) to a high value (1) while training the data 

in small batches. The training rate fluctuates from a lower learning rate 

boundary (min _𝑙𝑟) to a higher boundary (max _𝑙𝑟) during the cool-down Phase 

before returning to the initial low boundary rate. During the anhillation phase, 
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the learning rate value is further decreased to 1 10⁄  of (min _𝑙𝑟), as shown in 

Figure 5.1. Following each mini-batch, the learning rate is updated using the 

following formula: 

                                                       𝑙𝑟𝑖 = 𝑖𝑛𝑖𝑡_𝑙𝑟 ∗ (
𝑚𝑎𝑥_𝑙𝑟

𝑖𝑛𝑖𝑡_𝑙𝑟
)

𝑖/𝑛

                             5.1  

       

                                                       𝑚𝑎𝑥𝑙𝑟 =  𝑖𝑛𝑖𝑡𝑙𝑟 ∗ 𝑞                                            5.2 

  

where n is the number of iterations and q is the factor by which the learning rate 

is increased after every mini-batch. The summary of the training involving 

hyperparameter tuning is provided in Table 5.1.  

 

Figure 5.1 Modified one-cycle scheduler 

Table 5.1 Summary of training 

Training 

steps  

Dataset 

used 

Hyperparameters used Freeze initial 

layers 

Freeze later 

layers 

  Weight 

initialization 

Learning 

rate 

  

Phase I COCO The pre-trained weights of faster-

RCNN and mask-RCNN 

architecture on the COCO dataset is 

Not applied Not applied 
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acquired. No training takes place at 

this stage. 

Phase II SCD The model is 

trained by loading 

the weights from 

the Phase I 

The 

parameters 

are updated 

at a 

differential 

learning rate 

technique in 

the network. 

LR varies 

from 

'init_lr' - 

(~10-7) to a 

large value 

'max_lr'(~1). 

 

√ 

The first two 

stages of the 

backbone 

network are 

freezed  

X 

The model is 

not freezed 

at later 

stages 

Phase III WFD The model is 

trained by loading 

the weights from 

Phase II  

X 

The model is 

not freezed at 

any stage 

X 

The model is 

not freezed 

at any stage 

5.3 Experimental Set-up and Results 

The wrist fracture dataset is analyzed to identify the fracture presence, location, 

and segmentation mask. The study conducted in the past has involved multiple 

bones targeting different types of fractures. The researchers have trained and 

tested their model in their private datasets [23-30]. Additionally, the dataset 

involving bone fracture images with the annotation files corresponding to the 

bounding box and segmented mask labels is unavailable in the public domain. 

Therefore, comparing our proposed methodology to the state-of-the-art dataset 

is impractical. The experiments are executed in three stages. Stage 1 obtains the 

weights from the COCO dataset trained on the mask-RCNN model. Stage 2 

focuses on training the surface crack dataset using the weight files obtained 

from stage 1. The last stage is responsible for getting the wrist fracture dataset 

as input to the proposed architecture and utilizing the weights from stage 2 to 

detect, localize and segment the fractures accurately.  
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The model is executed separately for object detection and instance segmentation 

tasks. The standard COCO metrics utilize Average Precision (AP) at various 

threshold scales to analyze the results. The concept of Intersection over Union 

(IoU) is employed to evaluate the performance measure for fracture detection 

and localization using the AP value. The evaluation criteria, for instance 

segmentation are similar to those for object detection, with the exception that 

the IoU of the mask is calculated rather than bounding boxes. By calculating the 

percentage of overlap between the target mask and the predicted mask, the IoU 

is determined. The output of the suggested model is contrasted with the 

radiologists' annotated ground truth label and results from related studies. For 

fracture detection, an average precision of 92.278% on a scale of 500 and 

79.003% on a strict scale of 750 were reported. For fracture segmentation, an 

average precision of 77.445% on a scale of 500 and 52.156 on a strict scale of 

750 were reported. The IoU value is calculated using the equation 5.3. 

                      𝐼𝑜𝑈 =  
𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑠𝑘  ∩  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑎𝑠𝑘

𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑠𝑘 ∪  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑎𝑠𝑘
                          5.3 

The bounding box with the largest confidence score is considered True Positive 

(TP), whereas the remaining predictions are considered False Positive (FP) 

when multiple bounding box predictions are created for single ground truth, and 

the IoUs for all of the predictions are larger than the stated threshold. Using 

equations 5.4 and 5.5, the precision and recall values are computed. 

                                       𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
                                              5.4 

                          𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡ℎ𝑟𝑢𝑡ℎ𝑠)
                         5.5   

Finally, using equation 5.6, the Area under the Precision-Recall Curve (AUC) 

at thresholds 50 and 70 is calculated  

                                              𝐴𝑃∝ =  ∫ 𝑝(𝑟)𝑑𝑟                                                5.6
1

0
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The l1 loss and binary cross-entropy loss are used to calculate the localization 

and objectness losses. 

                                               𝐿 = 𝐿𝑜𝑏𝑗  +  𝐿𝑙𝑜𝑐                                                5.7 

                                           𝐿𝑜𝑏𝑗 =  
1

𝑁𝑜𝑏𝑗
∑ 𝐿𝑜𝑏𝑗 (𝑝𝑖,  𝑝𝑖

∗)                            5.8 

𝑖

 

                               𝐿𝑙𝑜𝑐  =  
𝜆

𝑁𝑙𝑜𝑐
∑ 𝑝𝑖

∗ ⋅  𝑘1
𝑠𝑚𝑜𝑜𝑡ℎ ( 𝑞𝑖 −  𝑞𝑖

∗)

𝑖

                 5.9 

                      𝐿𝑜𝑏𝑗  ( 𝑝𝑖 , 𝑝𝑖
∗ )= −𝑝𝑖

∗ 𝑙𝑜𝑔 𝑝𝑖 − (1 − 𝑝𝑖
∗ )𝑙𝑜𝑔(1 − 𝑝𝑖)            5.10 

where 𝑞𝑖  is the predicted coordinates of the bounding box and 𝑞𝑖
∗ is the ground 

truth coordinates, and  𝑝𝑖
∗  is the probability of the anchor being an item. The 

number of anchor locations is set to 𝑁𝑙𝑜𝑐, the normalization term is set to 𝑁𝑜𝑏𝑗 , 

and a balancing parameter (∼ 10) is used to evenly weight 𝐿𝑜𝑏𝑗 and 𝐿𝑙𝑜𝑐. 

Finally, from each feature map level of the image, 1000 region proposals are 

selected. The predicted bounding boxes are sorted utilizing the objectness score 

at each level, and the highest-scoring boxes are then obtained via non-max 

suppression. The segmentation, localization, and object classification masks are 

combined in the RCNN mask. 

                                               𝐿 = 𝐿𝑜𝑏𝑗 +  𝐿𝑙𝑜𝑐 + 𝐿𝑚𝑎𝑠𝑘                                              5.11            

The mask is constructed with a dimension of 𝑘 ∗ 𝑛 ∗ 𝑛, where k is the total 

number of classes for each RoI and class. The 𝐿𝑚𝑎𝑠𝑘  is calculated as the average 

binary cross-entropy loss considering only the 𝑘𝑡ℎ mask into account because 

the model is constructed to learn a mask for every class regardless of the number 

of classes. 

                  𝐿𝑚𝑎𝑠𝑘= −
1

𝑛2
∑ 𝑦𝑖𝑗  𝑙𝑜𝑔 𝑦̂𝑖𝑗

𝑘 + (1 − 𝑦𝑖𝑗)𝑙𝑜𝑔(1 − 𝑦̂𝑖𝑗
𝑘 )     5.121≤𝑖,𝑗≤𝑛  

where i, j are the cell labels and 𝑦𝑖𝑗 , 𝑦̂𝑖𝑗
𝑖  are the true and expected masks for the 

class 'k' region with a size of n x n, respectively. 
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To produce the results, a differential learning rate strategy is used over 1500 

iterations on NVidia K80/T4 for SCD and WFD by keeping the 

hyperparameters and architecture the same. The computation time for the 

proposed architecture involving 1497 iterations is 103 minutes and 45 seconds, 

while the original mask-RCNN architecture took 97 minutes and 31 seconds to 

complete 1231 iterations. A delay of 6 minutes and 14 seconds is observed 

because of the modifications done at the backbone architecture. 

The results are compared based on two levels: First, the ground truth annotations 

provided by the expert radiologist were examined to compare the outcomes 

produced by the proposed model. Table 5.2 lists the findings from various 

researchers' analyses of bone fracture datasets. The models in the published 

articles were pre-trained on non-medical datasets first, which were later used to 

fine-tune the wrist radiographs [23; 26-29]. Instead of using a non-medical 

dataset to train the model, we developed a surface cracks dataset (SCD), which 

has crack patterns resembling those of wrist bone fractures. The model was fine-

tuned on the wrist fracture dataset after acquiring the pre-trained weights from 

the SCD.  

Second, results obtained due to the modification done at the sub-architecture 

level are examined. The experiments are conducted and the results are analyzed 

at three levels (Level-0, level-1 and level-2). Combining the modifications 

proposed at these level 1 and level 2, we have obtained improved results against 

the standard mask-RCNN model for the wrist fracture dataset.  

At level-0, the experiments are conducted on mask-RCNN architecture using 

only the wrist fracture dataset, where the surface crack dataset is not used to 

derive crack-like features. Transfer learning is employed so that the COCO 

dataset trained on mask-RCNN architecture is used to obtain the pre-trained 

weights, which are then used as initial parameters before training the model on 

the wrist dataset. This leads to the average precision of 91.667% and 78.99% 

for fracture detection and 77.415% and 52.00% for fracture segmentation on 

500 and 750 scales, respectively.  
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Level-1 modification: The original mask-RCNN architecture is modified at sub-

architecture levels by customizing the backbone architecture's last level layer 

and utilizing the RoIAlign concept, as explained in sections 4.2.1 and 4.2.2, 

respectively. We also included the surface crack dataset to transfer knowledge 

from the non-medical COCO dataset to the wrist fracture dataset via surface 

crack images. Section 4.2 provides a detailed explanation of the knowledge 

transfer mechanism. On 500 and 750 scales, fracture detection achieved an 

average precision of 92.56% and 78.82% while fracture segmentation achieved 

an average precision of 77.432% and 50.211% respectively. 

Level-2 modification: We used the original mask-RCNN architecture, with the 

initial layers of the backbone architecture frozen, and the experiments were 

carried out in three stages, as explained in section 5.2. The surface cracks dataset 

is utilized to transfer knowledge from the non-medical COCO dataset to the 

wrist fracture dataset. On 500 and 750 scales, we achieved average precision of 

91.553% and 78.08% for fracture detection and 77.421 and 52.10% for fracture 

segmentation, respectively. 

Finally, we integrated the level 1 and level 2 modifications to obtain the 

improved average precision value. We achieved an average precision of 

92.278% and 79.003% for fracture detection and 77.445 and 52.156% for 

fracture segmentation on 500 and 750 scales, respectively. The results obtained 

at various levels are recorded in Table 5.3. 

Table 5.2 Analysis of results obtained by the existing articles on wrist fractures for 

object detection and segmentation. 

Ref 
Bone 

type 

Architecture 

type 

Input 

images 
FC FL FS Results (%) 

[24] wrist 
Extension of 

unet architecture 
34,990 ✔ ✔ ✖ 

AUC 97.88, 98 on 

two test sets 

[26] wrist Inception v3 11,112 ✔ ✖ ✖ AUC- 95.4 

[27] wrist faster R-CNN 14, 614 ✔ ✔ ✖ 

AUC (per-study)- 

89.5(95% CI: 87.0, 

92.0) 
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[28] wrist faster R-CNN 38 ✔ ✔ ✖ mAP – 86.6 

[29] wrist 

Inception-

ResNet faster-

RCNN 

7356 ✔ ✔ ✖ 

Sensitivity- 95.7%, 

specificity- 82.5%, 

and AUC- .918 

Proposed 

architecture 

Model based on 

mask-RCNN  
315 ✔ ✔ ✔ 

Fracture detection- 

AP50% -92.278 

AP75% -79.003 and 

Fracture 

segmentation- 

AP50% -77.445 

AP75% - 52.156 

Table 5.3 Analysis of results obtained by the proposed architecture on changes made 

at the architecture levels. 

  Architecture Type Fracture 

detection (%) 

Fracture 

segmentation 

(%) 

Level-0 modification - 

Original mask-RCNN architecture  

AP
50%

 -91.667 

AP
75%

 -78.99  

AP
50%

 -77.415 

AP
75%

 - 52.00 

Level-1 modification - 

Proposed model using modified lastlevel layer at 

backbone architecture and using RoIAlign  

AP
50%

 -92.56 

AP
75%

 -78.82  

AP
50%

 -77.432 

AP
75%

 - 50.211 

Level-2 modification - 

Proposed model by freezing initial layers of the 

backbone architecture 

AP
50%

 -91.553 

AP
75%

 -78.08  

AP
50%

 -77.421 

AP
75%

 - 52.10 

Proposed model combining modifications done at 

Level 1 and Level 2. 

AP
50%

 -92.278 

AP
75%

 -79.003  

AP
50%

 -77.445 

AP
75%

 - 52.156 

Each radiograph is given a ground truth label to test the model's correctness. In 

Figure 5.2, the outcome of the proposed model is shown in comparison to the 

radiologists' annotated ground truth label. In order to comprehend the false-

negative findings, the misclassified examples shown in Figure 5.3 were 

examined. Most false-negative instances could not detect fractures due to a lack 
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of training examples and unusually looking anomalies. The deep learning 

models are data-hungry, and in order to produce the best results, they need a 

large number of datasets with various types or forms of fractures.  

Figure 5.4 displays true-positive examples of surface cracks detected and 

localized by the network for which the confidence score is provided as a 

percentage count. Figure 5.5 determines and visualizes the segmentation loss, 

objectness loss, and localization loss for wrist fracture detection. 
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Figure 5.2 (Row 1-3) Radiographs display fractures of the radius and ulna as true-

positive cases. The suggested network detects and locates fractures for which a 

percentage-based confidence score is given. 
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Figure 5.3 (contd.) (Row 1-3) Radiographs display fractures of the radius and ulna as 

true-positive cases. The suggested network detects, locates and segment fractures for 

which a percentage-based confidence score is given. 
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Figure 5.4 (Row 1-2) Radiographs display false negative fracture examples where an 

arrow indicates the presence of the fracture. 

(Row 3) The examples from the surface crack dataset display false negative examples 

where an arrow indicates the presence of the crack. 
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Figure 5.5 Images show true positive examples of surface cracks. The proposed 

network detects, localizes, and segments the cracks for which the confidence score is 

provided in the form percentage count. 
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Figure 5.6 (contd.) Images show true positive examples of surface cracks. The 

proposed network detects, localizes, and segments the cracks for which the 

confidence score is provided in the form percentage count. 
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Figure 5.7 (a) Loss box regression, 𝐿𝑙𝑜𝑐 (b) classification loss, 𝐿𝑜𝑏𝑗 (c) Total loss for 

fracture detection model (d) AP50 

Fracture localization (e) AP50 Fracture segmentation 

5.4 Conclusion 

The proposed model is tuned by selecting the appropriate parameters and 

hyperparameters significant for analysis and experimentation. The parameters 

selected during model training at sub-architecture levels, such as the number of 

filters, filter size, activation function, pooling size, etc., are discussed. The open-

source pre-trained weight file of the COCO dataset trained on the mask-RCNN 

model with Resnet-50 as the feature extractor is utilized to fine-tune the model 

on the surface crack dataset.  
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The model is frozen at the initial layers of the training, which means the 

parameters are not updated during the backpropagation of the model for the 

freezed layers. This is done because the initial layers of the CNN architecture 

are meant to obtain generic features. The first layer of CNN is intended to 

identify simple gradients of the line, the second layer finds simple shapes, and 

the third layer finds the combinations of lines and shapes.  On the other hand, 

the final layers concentrate more on the particular task at hand, like identifying 

the image's crack patterns. 

The pre-trained COCO dataset is used to fine-tune the proposed architecture on 

the surface crack dataset. The same step is repeated for fine-tuning the wrist 

fracture dataset using the weight file obtained from the SCD. Because the 

features predicted by the initial layers of a CNN architecture will be the same 

regardless of the dataset used, it is unlikely that better features will be generated 

at the initial layers while updating the gradients at the same learning rate. 

Considering the same reason, the initial layers were frozen while training the 

model. The learning rate is kept different for different architecture sections, 

computed using a differential learning rate strategy. Firstly, the data is trained 

batch-wise, where the learning rate gradually rises from an exponentially low 

value (10-7) to a high value (1). Next, the learning rate is selected using a 

learning rate finder curve to update the network parameters.  

The model is executed separately for object detection and instance segmentation 

tasks of the self-collected Surface crack and wrist bone datasets. The standard 

COCO metric Average Precision (AP) is employed at threshold 500 and 750 to 

analyze the results using Intersection over Union (IoU). If the IoU of the 

predicted crack label is greater than 500, then only the crack is said to be detected 

else not. Similarly, a strict scale of 750 is used to identify, localize and segment 

the cracks in SCD and WFD. 

The researchers have trained and tested their model in their private datasets. 

Therefore, evaluating the proposed model performance on the state-of-the-art 

dataset was not feasible. The results are compared based on two levels: First, 
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the ground truth annotations provided by the expert radiologist were examined 

to compare the outcomes produced by the proposed model. Second, results 

obtained due to the modification done at the sub-architecture level are 

examined. For fracture detection, an average precision of 92.278% on a scale of 

500 and 79.003% on a strict scale of 750 was reported. For fracture 

segmentation, an average precision of 77.445% on a scale of 500 and 52.156% 

on a strict scale of 750 was reported. 
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CHAPTER -6 

6 CONCLUSIONS AND FUTURE SCOPE 

In radiology, computer-assisted detection (CAD) has historically failed to 

improve diagnostic precision, lowering clinician sensitivity and leading to 

unnecessary additional diagnostic tests. The ability to identify fractures in 

radiographs is crucial for clinical purposes. In 2012, there was a predicted 

backlog of 12,000 cross-sectional studies and 200,000 plain radiographs [9]. 

These numbers call for urgent workflow management improvements and 

reporting efficiency to reduce the harm that delayed or missed diagnoses cause 

to patients. Radiologists could benefit greatly from automatic detection-based 

or localization techniques in their fight against fatigue. 

According to the type of abnormality detected by the automated system, 

radiologists can further prioritize diagnosis and treatment. Non-orthopaedic 

surgeons or novice medical professionals who are untrained in fracture 

detection are often the first sources of contact for any patient in the event of a 

fracture. Therefore, it is quite common for fractures to be incorrectly identified 

during X-ray images interpretation.  

The primary driving force behind this research was to propose a fracture 

detection architecture based on deep learning methods with superior accuracy 

and minimal complexity. This chapter highlights our major contributions to 

bone fracture detection using machine learning and computer vision models and 

discusses possible future research directions. 

6.1 Summary of the Thesis 

In this thesis, we presented a deep learning model to be applied to wrist bone 

X-rays to detect and segment radius and ulna fractures. We provided two 

datasets of wrist bone X-rays and surface cracks, together with the pixel-level 

labels correlating to them. These datasets were utilized for training our deep 

learning models. For other researchers working in this field, we have made a 
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portion of the dataset available in public domain [118]. The main research 

objectives mentioned in Chapter 1, 1.3 have been addressed in this thesis in the 

following order: 

First, we propose two novel datasets: The wrist fracture dataset (WFD) and the 

Surface crack dataset (SCD). For studies carried out between February 2019 

and March 2020, the Doon Hospital, Dehradun, India, provided anonymized 

wrist radiographs. The dataset was obtained without revealing the participant's 

identity or demographic information under the Ethical Conduct in Human 

Research and Related Activities Regulations. Instead of pretraining the model 

on a non-medical dataset, we have incorporated a surface crack dataset with 

similar crack patterns to wrist bone fractures. SCD consists of pictures taken 

from walls, pavements, and roads, created using a mobile camera. Both SCD 

and WFD are preprocessed before feeding them to the network. The WFD is 

cropped to exclude the finger bone regions from the hand X-rays, followed by 

removing the "red spot" annotations from the image. Next, we converted the 

DICOM image to the 24-bit lossless JPEG format while ensuring the best 

windowing was chosen under the doctor's supervision. Afterward, the images 

are undergone a labeling process followed by augmentation. All the images in 

our datasets are manually labeled, which was time-consuming but less error-

prone than the automatic annotation software. The radiologists have utilized 

LabelMe software to annotate the wrist bone images. The skilled radiologist 

labels the wrist fractures by tracing a box around the fracture. Drawing a 

bounding box may not accurately depict the shape of the fractures, as it involves 

non-essential bone areas when the model is being trained. In order to further 

label each image, a mask is made by drawing a more intricate shape, such as a 

polygon, around the crack. We manually annotate the SCD for the two distinct 

tasks of instance segmentation and object detection. A portion of the dataset is 

made publicly available for research to circumvent data collection challenges 

and wrist fracture labeling [118]. 
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Second, we demonstrate a novel fracture localization and segmentation model 

comprised of three sub-architectures: the Backbone network, the Region 

Proposal Network (RPN), and RoIAlign. The fractures are localized and 

segmented based on the instance segmentation technique, which integrates 

faster-RCNN and semantic segmentation. Instance segmentation combines 

classification, localization, and segmentation tasks into a single output, a 

polygon mask encircling the defined target. We have used Instance 

segmentation which detects segments and classifies every fracture in the image 

by assigning a label to an individual image pixel. According to our knowledge, 

this study is the first one to concentrate on creating a segmentation mask around 

the class labels to detect wrist fractures. The intuition behind involving 

segmentation along with the localization of wrist fractures is better visualization 

of the shape of the fractures. It has been observed that the fracture shape is 

extended in a vertical and horizontal direction in most of the X-ray samples 

collected. The automatic localization of the fractures is improved by creating a 

segmented mask along with the bounding box to locate the fractures and their 

shape. 

The backbone network consisting of a top-down and bottom-up pathway is 

responsible for extracting semantically powerful features (p2-p6) from the input 

image. The top-down pathway inspired by ResNet-50 architecture is intended 

for feature extraction. The bottom-up pathway inspired by the feature pyramid 

network (FPN) combines low-resolution, semantically powerful features with 

high-resolution, semantically weak features. To identify large and small objects, 

we have created a pyramid using the same image at various scales. We modified 

the backbone architecture's last-level max-pool layer by replacing it with a 

linear combination of ACP (AdaptiveConcatPool), AMP (AdaptiveMaxPool), 

and AAP (AdaptiveAvgPool) layers. The pooling layers (AAP, ACP, AMP) are 

used as a transitional phase to connect the convolution layer to the fully 

connected layers in the modified architecture. In our investigations, the 

maximum and average activations from the previous convolution are preserved, 
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offering the model knowledge of both the approaches and enhancing 

performance. 

The smaller and larger objects are detected next using the fracture localization 

and segmentation techniques. This stage's sub-architecture comprises two 

networks- RPN (Region Proposal Network) and the RoIAlign layer. RPN 

applies a sliding window on the predicted feature maps (p2-p6) to identify the 

objectness logits and anchor deltas of the object. Anchor generation is another 

step toward object detection, which helps connect the pred_obj and pred_anchor 

to the ground truth boxes. Anchor sizes (32, 64, 128, 256, and 512) are used for 

(p2-p6) feature maps generated from the backbone architecture. The aspect ratio 

of 2:1, 1:1, and 1:2 is set for defining the shape of the anchors. The intersection 

over union (IoU) is computed using the generated anchors and the ground truth 

boxes. The objective is to find anchors similar to the ground truth boxes out of 

1,20,015 anchors using the concept of IoU. The resampling is done as the 

number of anchors generated per image is 1,20,015, where most anchors are 

background. In our experiments, less than 100 anchors are the foreground, less 

than 1000 anchors are ignored, and the remaining are the background. 

Localization loss or l1 loss is computed by ignoring all background labels. 

Finally, 1000 region proposal boxes are selected by applying the predicted 

anchor deltas to the corresponding anchors and sorting them based on the 

objectness score individually for (p2-p6) feature maps. Next, NMS (Non-max 

suppression) is applied to selected top-scored 1000 boxes.   

In RoI pooling, the proposal boxes-specified feature maps are cropped into 

rectangular regions of interest (RoIs). The RoI is cropped from the feature maps 

by allocating proposal boxes to the relevant feature maps. A new technique 

(RoIAlignv2) is adopted for cropping the region of interest precisely using a 

modified version of ROIAlign. The neighboring indices are accurately 

computed by subtracting the half-pixel offset (0.5) from ROI coordinates. This 

method has overcome the disadvantages of choosing a slightly off-aligned pixel 

value while using bilinear interpolation. Next, a parallel layer is added with the 
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existing object detection framework to generate the mask around the cracks. 

The sub-architecture in this layer consists of a convolutional layer to extract 

features, generating pixel-to-pixel mapping. Next, another convolutional layer 

is added, followed by RoIPool and RoIAlign layers to obtain the bounding box 

for the classification and regression task.  

Third, transfer learning is utilized in the proposed methodology to transfer the 

knowledge from the non-medical (COCO) dataset to the wrist-fracture 

(medical-domain) dataset via the surface crack dataset. The proposed approach 

does not directly use transfer learning on the wrist fracture dataset. The wrist 

dataset is fine-tuned using a surface crack dataset with similar crack patterns. 

Before that, the surface crack dataset was fine-tuned using the state-of-the-art 

COCO dataset.  

Fourth, the proposed model is tuned by selecting the appropriate parameters and 

hyperparameters significant for analysis and experimentation. The pre-trained 

weights of the COCO dataset obtained from Phase I of the proposed 

methodology are transferred to Phase II for surface crack detection. The weight 

file from the pre-trained mask-RCNN model is incorporated rather than 

applying random weight initialization techniques in phase I. We used the notion 

of freezing and unfreezing certain layers of the proposed architecture. During 

the second phase of training, the proposed model's initial layers are frozen (not 

trained). It is unlikely to generate better features at the initial layers while 

updating the gradients at the same learning rate because the features predicted 

by the initial layers of a CNN architecture will be the same irrespective of the 

dataset used. The entire architecture is then unfrozen and trained in the third 

phase by updating the learned parameters. Using a learning rate finder curve, 

the network updates the parameters at a differential learning rate. This method 

employs different learning rates for deep neural architecture segments. 
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6.2 Future Work 

The proposed deep learning model for fracture detection in bone X-rays 

provides better detection accuracy than the baseline model due to the 

effectiveness of deep learning-based models in obtaining better accuracy in 

computer vision techniques. However, the research presented here have wider 

scope with several extensions addressing variety of challenges that require 

future attention, as is the case with many other academic articles in the same 

field. In the part that follows, we go through some of these issues and suggest 

upcoming directions that, in our opinion, will have a significant influence. 

Utilizing a trained model to forecast the fracture takes a few milliseconds on a 

modern computer. Though, we have presented two datasets in this work but it 

is a laborious operation in medical imaging to gather hundreds of thousands of 

radiographs, give accurate labels to these X-ray images, and feed adequate 

training data to the models. A promising solution to the unavailability of the 

large dataset is to improve a CNN that has already been trained on a different 

network.  These pre-trained models enable researchers to gain the very 

sophisticated and potent features required for the topic of interest. The model 

can be trained on numerous images rather than millions of non-radiology 

images. The model can be trained on bone X-ray images, such as those of the 

ankle, knee, neck, hip, and other bones, rather than being pre-trained on millions 

of non-radiology images. By doing so, we could more effectively set up the 

model parameters that will be utilized to train the required X-ray images later 

on. With the small exception that we pre-train the model on various types of 

bone X-ray images rather than non-medical images, this method is comparable 

to transfer learning. When given enough training data, a machine like CNN can 

perform consistently and even outperform humans in terms of the ability to 

interpret a variety of complex X-ray structures. Furthermore, people tend to 

predict the correct outcome in shapes with which they are familiar rather than 

those with which they are unfamiliar with the fracture configuration. Therefore, 

a CNN could potentially be trained with enormous amounts of training data that 
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includes all possible cases, from those with simpler fracture structures to those 

with the most complex ones, more than any orthopedics will ever encounter in 

their lives. 

This proposed work focuses on constructing the segmentation mask around 

wrist fractures using the integration of faster-RCNN and semantic 

segmentation. Till now, most published work on fracture detection and 

classification emphasizes on a single anatomical region or a single type of 

fracture in many anatomical regions [23-30] [106-115]. A model capable of 

identifying diverse fracture types in various anatomical regions would be ideal. 

In order to detect fractures, more than one body region, such as the wrist, may 

be inspected. At the moment, wrist fracture diagnosis's only capabilities are 

localizing and providing a segmentation mask [23-30]. However, depending on 

its location, it would be preferable if we could determine the type of wrist 

fracture, which could be a lunate, scaphoid, radius, or ulna. Furthermore, 

depending on the pattern, the fracture can be transverse, undisplaced, 

comminuted, and so on. Our research is limited to identifying, localizing and 

segmenting fractures, which can be extended to categorize fracture types based 

on their location and pattern in the image. 

The proposed architecture's performance is compared on two levels: First, the 

expert radiologist's ground truth annotations were compared to the outcomes 

generated by the proposed model. Second, the results obtained from the sub-

architecture modification are examined. When a classifier is compared to actual 

or known data provided by the radiologist, the radiologist's performance is 

recognized as 100% accurate. This indicates that the radiologist interpreting 

hundreds of images finds and categorizes fractures in all samples with a zero 

mistake rate. Cohen's kappa statistic was utilized in 2017 to develop a Gold 

standard for abnormality detection in X-ray samples from various anatomical 

locations [103]. Three experts are chosen randomly from a pool of six board-

certified radiologists to constitute the gold standard, and a majority vote 

determines the label. Similarly, a globally recognized gold standard for a labeled 



105 

 

fracture dataset might be produced for fracture detection and classification. This 

would allow academics to compare the performance of the proposed model to 

industry best practices. 
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