Name:	WUPES
Enrolment No:	<u> </u>

UPES

End Semester Examination, May 2023

Set 1

Course: Computer Aided Drug Design

Semester: 8th

Course Code: BP807ET

Duration: 3 Hours

Program: B. Pharmacy Max. Marks: 75

Instructions: Read all the questions carefully. Follow the instructions mentioned against each section.

SECTION A (2Qx10M=20 Marks)

(Answer all the questions)

S. No.		Mark	COs
		s	
Q1.	Sketch the chemical structure of Cimetidine.	2	CO1
Q2.	In computational chemistry, HTS stands for:	2	CO1
	a. High throughput system		
	b. High throughput scintillation		
	c. High throughput screening		
	d. None of the above		
Q3.	Which bioisosteres have been successfully employed in the development of	2	CO1
	H2 receptor antagonists.		
	a. Halogen bioisosteres		
	b. Thiourea bioisosteres		
	c. Amide bioisosteres		
	d. Classical bioisosteres		
Q4.	was the lead used for the development of anti-inflammatory drug	2	CO1
	Indomethacin.		
Q5.	ADME stands for	2	CO1
Q6.	Sketch the structure of Serotonin.	2	CO1
Q7.	The measure value of the electron withdrawing or donating ability of a	2	CO1
	substituent is known as:		
	a. logP		
	b. Taft's constant		
	c. Free Wilson analysis		
	d. Hammett's substitution constant		
Q8.	Draw the chemical structure of Aspirin.	2	CO1
Q9.	The molecular mechanics deals with:	2	CO1
	a. Number of atoms		
	b. Number of orbitals		
	c. Number of proton		
	d. Number of molecule		

Q10.	Multiple protein structures are utilized as an ensemble for docking with	2	CO1		
	ligand in one of the following techniques:				
	a. Induced fit docking				
	b. Lock and key docking				
	c. Ensemble docking				
	d. Rigid docking				
	SECTION B				
	(2Qx10M=20 Marks)				
Long Answe	ers (Answer 2 out of 3)				
Q11.	Using Newman's projection of n-butane, determine the global conformation	10	CO4		
	minima.				
Q12.	Describe the various stages of drug discovery. Critically analyze the trend	10	CO5		
	followed in the discovery of Cimetidine.				
Q13.	Explain the concept of 3D-QSAR (CoMFA) in detail.	10	CO2		
	SECTION C				
	(7Qx5M=35 Marks)				
	ers (Answer 7 out of 9)		T		
Q14.	Write a note on applications of molecular docking.	5	CO3		
Q15.	Give brief on Lead compound. Give example.	5	CO3		
Q16.	Describe a case study for analog based drug design.	5	CO3		
Q17.	Describe the physicochemical parameters based on "Steric effects", used in	5	CO3		
	QSAR.				
Q18.	What is bioisosterism? Classify bioisosteres.	5	CO3		
Q19.	What is h-bond interaction? Give its importance in drug design.	5	CO3		
Q20.	Write a note on quantum mechanics.	5	CO3		
Q21.	Discuss about drug-likeliness screening.	5	CO3		
Q22.	What is the main focus of medicinal chemistry?	5	CO3		