Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2023

SECTION A

Course: Biopharmaceutics and Pharmacokinetics Program: B. Pharm. Course Code: BP 604 T

Semester: VI Time: 03 h. Max. Marks: 75

Instructions: All the sections are compulsory.

S. No.	CO		Marks
		Answer all the questions.	20
1.	CO1	The transportation and alteration of the drug by the body is known as	1
		A. Pharmacodynamics B. Pharmacokinetics	
	~ ~ ~ /	C. Pharmacogenomics D. Toxicology	
2.	CO1	Define facilitated diffusion.	1
3.	CO1	Following are the characteristics of passive diffusion of drug except.	1
		A. It is an energy independent process.	
		B. Drugs moves up the concentration gradient.	
		C. It requires specific transporters.D. It is non saturable process.	
4.	CO1	What kind of substance can easily cross the membrane?	1
		A. Lipid soluble drugs B. Ionized drugs	
		C. Polar Drugs D. Hydrophilic drugs	
5.	CO1	If the drug has volume of distribution 500 L, them comment on the characteristics of	1
		the drugs.	
6.	CO2	State the formula for calculating the clearance.	1
7.	CO2	Which of the following route of administration always shows 100% bioavailability?	1
		A. Oral B. Intramuscular	
		C. Topical D. Intravenous	
8.	CO2	Which is the major site of drug metabolism in the body?	1
		A. Liver B. Skin	
		C. Kidney D. small intestine	
9.	CO2	If the clearance of the drug remains constant, doubling the dose rate will increase the	1
		steady-state plasma drug concentration by a factor of	
		A. 3 B. 2	
10	~~~	C. 4 D. 5	
10.	CO2	Plasma protein bound drug have low volume of distribution as compared to drugs that do not bind to plasma proteins.	1
		A. True B. False	
11.	CO3	How much time is required to reach the 90% of steady state concentration in IV	1
		infusion?	
		A. 2 half-lives B. 4 half-lives	
		C. 6 half-lives D. 3.3 half-lives	

12	CO3	The ratio of maximum safe concentration to minimum effective concentration is called	1
		as	
		A. Therapeutic range.	
		B. Therapeutic outcome.	
		C. Therapeutic index.	
	~~~	D. Therapeutic ratio	
13.	CO3	Method of residuals is used for the determination of in pharmacokinetic data	1
		post-extravascular administration.	
		A. Plasma drug concentrationB. Renal excretion rate	
	~~~	C. Rate constant for absorption (Ka) D. Clearance	
14.	CO3	What is Mammillary model in pharmacokinetics?	1
15.	CO3	In one compartment open model, clearance can be calculated by (Select all	1
		possible answers)	
		A. K_EV_d C. $P_{EV}(AUC)$ B. $(dX/dt) / C$ D. Normal of the shares	
16.	CO3	C. Dose / AUC D. None of the above Identify the model depicted in given figure.	1
10.	COS	Blood and other K _E	1
		A. One compartment open model for IV bolus Body Tissues	
		administration B. One compartment open model for IV infusion	
		C. One compartment open model for IV infusion	
		One compartment open model for IV loading dose + IV infusion	
17.	CO4	Draw a box model for "Two compartment open model for IV bolus".	1
18.	CO4	What is peripheral compartment in two-compartment model.	1
19.	CO5	Non-linear pharmacokinetics is also known as	1
		A. Dose dependent pharmacokinetics B. Enzyme capacity limited pharmacokinetics	
		C. Saturation pharmacokinetics D. All of the above	
20.	CO5	In non-linear kinetics, pharmacokinetic parameters change with the size of dose	1
		administered.	
		A. True B. False	
		SECTION B	
Answer	any two o	questions of the following.	20
1.	CO1	a. What is volume of distribution and state the formula for calculating volume of	4+6
		distribution?	
		b. Describe any three factors affecting volume of distribution.	
	GOA		
2.	CO3	The equation best fits the pharmacokinetics of paracetamol after oral administration of 500 mg dose is $C = 1.18 (e^{-0.24t} - e^{-1.6t})$.	10
		By assuming one compartment open model, calculate following parameters:	
		a) Peak time (2 marks)	
		b) Peak plasma drug concentration (3 marks)	
		c) half-life of the drug (2 marks)	
		a. Concentration of drug after 3 hours of administration (3 marks)	
3.	CO2	A. How change in urine pH can be used to selectively excrete the drug via urine?	6+4
		B. Describe blood brain barrier in detail.	
		SECTION C	

Answer any seven questions of the following.			35
1.	CO5	Non-linearity can be found in absorption and metabolism. Justify the statement.	5
2.	CO2	Explain any one non-renal excretion processes.	5
3.	CO2	Define bioavailability. And state the equations for calculating relative and absolute bioavailability.	1+4
4.	CO3	Describe once compartment open model for IV diffusion with the help of graph.	5
5.	CO1	Why weakly acidic drug is most likely absorbed from stomach.	5
6.	CO4	What are central and peripheral compartments in the two-compartment model? Give suitable examples.	5
7.	CO5	Derive the equation and graph for Lineweaver-Burk plot used for determination of Vmax and Km.	5
8.	CO4	Explain two-compartment open model IV infusion with the help of compartment diagram	5
9.	CO3	Enlist the application of compartment modeling in pharmacokinetics.	5
		Total	75