TA 1	r		
	•	m	Δ
1 4			

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Food and Industrial Microbiology

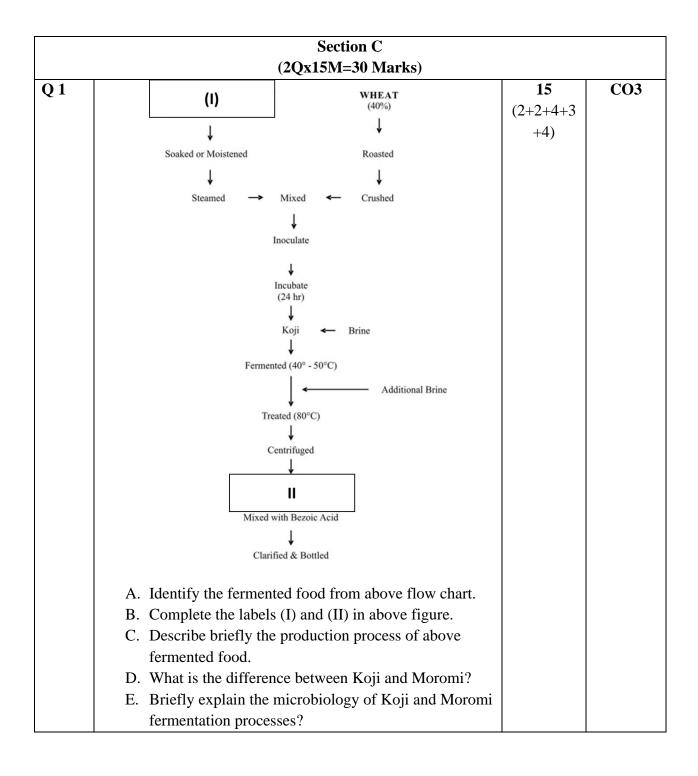
Semester: IV

Program: Integrated BSc-MSc Microbiology

Duration: 3 Hours

Course Code: HSMB2013 Max. Marks: 100

Instructions: Read Questions Carefully


S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q1	Kumis is a type of fermented:	1.5	CO4
	A. Milk		
	B. Cabbage		
	C. Carrot		
	D. Meat		
Q2	The process of preserving food by rapid freezing followed by	1.5	CO2
	dehydration under vacuum is called:		
	A. Lyophilisation		
	B. Sterilization		
	C. Cold Dehydration		
	D. Cryopreservation		
Q3	Today, about 99% of citric acid production is carried out by:	1.5	CO5
	A. Chemical synthesis		
	B. Microbial fermentation		
	C. Fragmentation		
	D. Condensation		
Q4	The fungus most commonly used for industrial production of	1.5	CO5
	citric acid is:		
	(A)Aspergillus niger		
	(B) Escherichia coli		
	(C) Gluconobactor suboxidance		
	(D) Lactobacillus pentosus		

Q5	The best medium for the production of Penicillin is:	1.5	CO5
	A. Nutrient agar		
	B. Corn steep liquor		
	C. Sulfite waste liquor		
	D. Whey		
Q6	Crushed grapes used for wine manufacturing are known as:	1.5	CO3
	A. Wort		
	B. Must		
	С. Нор		
	D. Pilsener		
Q 7	Leavening during fermentation of Idli is primarily caused by	1.5	CO3
	activity of:		
	A. Homofermentative <i>Leuconostoc mesenteroides</i>		
	B. Heterofermentative <i>Leuconostoc mesenteroides</i>		
	C. Homofermentative <i>Lactobacillus mesenteroides</i>		
	D. Homofermentative Streptococcus faecalis		
Q8	Different methods of strain improvement are	1.5	CO5
	A. Protoplast fusion		
	B. Recombinant DNA technique		
	C. Genetic recombination		
	D. All of these		
Q9	L-lysine is produced from:	1.5	CO5
	A. Corynebacterium glutamicum		
	B. Streptococcus sp		
	C. Mycobacterium sp		
	D. None of these		
Q10	A by-product of streptomycin production is:	1.5	CO5
	A. Vitamin A		
	B. Proline		
	C. Vitamin B12		
	D. None of these	1	~~-
Q11	Industrial Production of Vitamin-B12 is from	1.5	CO5
	A. Propionibacterium sp.		
	B. Pseudomonas sp.		
	C. Both a and b		
	D. None of these		

0.10			004
Q12	Which of the following is obtained by fermenting milk?	1.5	CO4
	A. Gundruk		
	B. Cheese		
	C. Sinki		
	D. Kombucha		
Q13	Which of the following leads to the formation of soft cheese?	1.5	CO4
	A. Removal of a small proportion of whey		
	B. Using more amount of milk		
	C. Removal of the larger proportion of whey		
	D. Using less amount of milk		
Q14	Large holes in swiss-type cheese is due to CO ₂ production by:	1.5	CO4
	A. Propionibacterium shermanii		
	B. Penicillium roquefortii		
	C. Aspergillus flavus		
	D. Lactobacillus acidophilus		
Q15	Rennet is:	1.5	CO4
	A. Hard cheese		
	B. Complex set of enzymes		
	C. Soft cheese		
	D. Semi-hard cheese		
Q16	Common microbes used as starter culture in yoghurt are:	1.5	CO4
	A. S thermophilus and L bulgaricus		
	B. P notatum and A niger		
	C. Lacidophilus and Paeruginosa		
	D. B subtilis and C botulinum		
Q17	A milk sample was adulterated by adding starch to increase solid	1.5	CO6
	content. Such adulteration can be detected by adding:		
	A. Congo red to milk sample		
	B. Iodine to milk sample		
	C. Acid to milk sample		
	D. Alkali to milk sample		
Q18	A suitable selective media for enumeration of Lactobacilli in	1.5	CO4
	yoghurt is:		
	A. EMB agar		
	B. McConkey agar		
	C. MRS agar		
	D. NA agar		

Q19	A brown color in milk may result from:	1.5	CO1
	A. Pseudomonas putrefaciens		
	B. Enzymatic oxidation of tyrosine by <i>P fluorescens</i>		
	C. Both (A) and (B)		
	D. S. marcescens		
Q20	Pseudomonas nigrifaciens in mildly salted butter may cause:	1.5	CO1
	A. black smudge		
	B. greenish areas		
	C. pink color		
	D. none of these		

	Section B (4Qx5M=20 Marks)		
Q 1	A. What are mold-ripened cheese?	5	CO4
	B. Give two examples of molds used for making mold-	(2+3)	
	ripened cheese.		
	A. What is blanching?	5	CO2
Q2	B. What is the effect of blanching on food?	(2+3)	
	C. Name two antioxidants used in food preservation.		
Q3	Write a brief note on the fermentation process of Lactic acid with	5	CO5
	a schematic diagram.		
Q4	A. What is rancidity?	5	CO1
	B. Mention the three types of spoilage seen in canned foods.	(2+3)	

Q2	Principle 1 : Perform a hazard	15	CO6
	analysis	(2+3+2+2	
		+1+5)	
	Principle 2 : Determine the Critical Control Points (CCPs)		
	Crisical Control Folias (CCF3)		
	Principle 3: Establish critical limits		
	Principle 4 : Establish a CCP monitoring system		
	Principle 5 : Establish corrective action		
	Principle 6 : Establish procedures of verification		
	Principle 7: Introduce a documentation system		
	A. What does the 7 principles represent in above figure?		
	B. Which principle is the most important and why?		
	C. What is a hazard?		
	D. What are critical control points?		
	E. What is the utility of a decision tree?		
	F. State the microbiological hazards that you envisage		
	in a dairy industry.		
	Section D		
	(2Qx10M=20 Marks)		
Q 1	A. Write a short note on naturally occurring anti-	10	CO2
	microbial substances present in milk.	(5+2+3)	
	B. Define minimal infective dose?		
	C. What is the difference between food borne infection		
	and food-borne intoxication?	1-	
Q2	A. What are the various intrinsic and extrinsic factors	10	CO1
	involved in microbial food soilage.	(5+2+3)	
	B. What is Maillard reaction?		
	C. State the merits and demerits of Maillard reaction during food processing and storage?		