N	์ก	m	ρ	
1 7	а		C	•

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Biostatistics Semester : IV

Program: B.Tech Biotechnology
Course Code: HSCC2022

Duration: 3 Hours
Max. Marks: 100

Instructions: Attempt all the questions.

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F/Fill in the blanks		
	(20Qx1.5M= 30 Marks)		
Q 1	Explain "Etiological factors – risk factors in the population".	1.5	CO1
Q 2	What do you understand by "Natural history of diseases"?	1.5	CO1
Q 3	Define:	1.5	CO1
	I. Attack rates		
	II. Morbidity rates		
	III. Prevalence		
Q 4	In an outbreak of gastroenteritis among attendees of a	1.5	CO1
	corporate picnic, 99 persons ate potato salad, 30 of whom		
	developed gastroenteritis. Calculate the risk of illness among		
	persons who ate potato salad.		
Q 5	Explain the "Method for calculating incidence rate".	1.5	CO1
Q 6	Explain spectrum of disease in a specific geographical area?		CO2
Q 7	What is "Wheel theory"?		CO2
Q 8	Explain the process and importance of "descriptive epidemiology".	1.5	CO2
Q 9	What is the difference between Population (mass) strategy & High risk strategy?		CO2
Q 10	Explain Disability Limitation and Rehabilitation.	1.5	CO2
Q 11	If a constant value 5 is subtracted from each observations of a	1.5	CO3
	set, the mean of the set will		
	(a) increase by 5		
	(b) decrease by 5		
	(c) remains same		
	(d) None of these		

Q 12	Correlation coefficient always lies between and	1.5	CO3
Q 13	A bar diagram indicates the type of correlation between two variables.	1.5	CO3
	(a) True (b)False		
Q 14	Dispersion means	1.5	CO3
	(a) The scatteredness of a set of observations(b) The concentration of a set of observations(c) Both a and b(d) None of these		
Q 15	If x and y satisfy the relationship $x = 6 + 12y$, the value of r is (a) 0 (b) -1 (c) 1 (d) None	1.5	CO3
Q 16	The regression coefficients b_{xy} and b_{yx} are zeros, if the correlation coefficient $r = $	1.5	CO4
Q 17	If a random variable has a Poisson distribution such that $P(1) = P(2)$, then the mean of distribution is	1.5	CO4
Q 18	Define population and sample.	1.5	CO4
Q 19	If 10% of the bolts produced by a machine are defective, determine the probability that out of 10 bolts chosen at random, none of them is defective.		CO4
Q 20	Explain the significance of the Chi-Square test.	1.5	CO4
	Section B (4Qx5M=20 Marks)		
Q 1	Explain the incubation periods of selected exposures and diseases also mention their clinical effect:	5	CO1
	 I. Organophosphorus ingestion II. Salmonella III. SARS-associated corona virus IV. Varicella-zoster virus 		
	V. Hepatitis A virus		

Q 2	Explain chain of infections epidemic disease occurrence				5	CO2	
Q 3	epidemic patterns and its prevention. Draw a "less than" cumulative frequency curve (also called Ogive) for the frequency distribution.				5	CO3	
		I.Q Frequency					
	60		2				
	70-80 5						
	80		12				
	90-		31				
	100-110 39						
Q 4	The following table gives age (x) in years of cars and annual maintenance cost (y) in hundred rupees.				and annual	5	CO4
	x 1	3	5	7	9		
	y 1:	5 18	21	23	22		
	Estimate the ma		for a 4 year Section	•	y obtaining		
		(°	Section 2Qx15M=30				
Q 1	Explain with t	Explain with the schematic diagram and flow chart "The 15				15	CO2
	Natural history of disease in a patient".						
Q 2	The income of a group of 10,000 persons was found to be normally distributed with mean Rs. 750 per month and standard deviation of Rs. 50. Show that, of this group, about				15	CO4	
	95% had incomexceeding Rs. (Given $P(0 < z)$)	832.		•			
		ſ	Section				
Q 1	(2Qx10M=20 Marks) (A)Explain in detail "Census and Sample Surveys". [5 M]				10	CO1	
	(B) Explain various study designs with "Descriptive and analytical epidemiology". [5 M]						
Q 2	Using Non-linear Regression, fit a second degree parabola (polynomial) to the following data.				10	CO3	
	(polynomial) to	Ü					
	x	0	1		2		