Name:

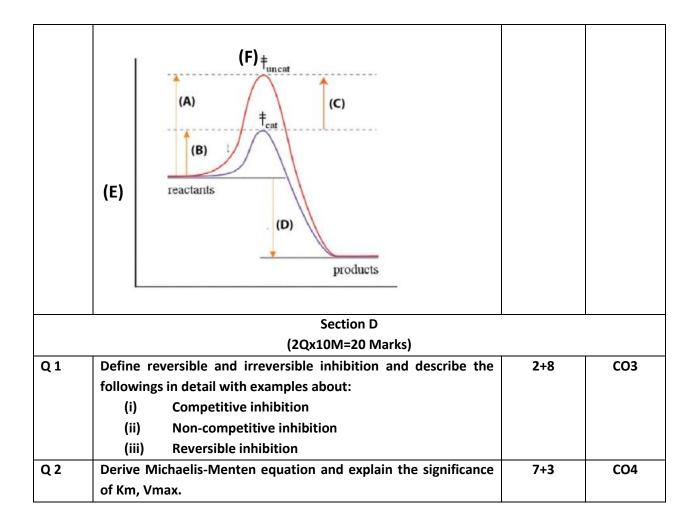
Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2023

Course: Bioenergetics and Enzyme Technology Program: B.Tech. Biotechnology Course Code: HSBT 2007 Semester : IV

Duration : 3 Hours


<u> WPES</u>

Max. Marks: 100

Instructions:

S. No.	Section A	Marks	Cos
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q1	Which inactivates an enzyme by occupying its active site?	1.5	CO1
	(A) Competitive inhibitor		
	(B) Allosteric inhibitor		
	(C) Non-competitive inhibitor		
	(D) All of these		
Q 2	Feedback inhibition of enzyme action is affected by	1.5	CO1
	(A) Enzyme		
	(B) Substrate		
	(C) End products		
	(D) None of these		
Q 3	A sigmoidal curve of substrate concentration [S] Vs reaction	1.5	CO1
	velocity (V) may indicate:		
	(A) Michaelis -Menten kinetics		
	(B) Co-operativity binding		
	(C) Competitive inhibition		
	(D) Non-competitive inhibition		
Q 4	Which one of the following reactions is used for recycling of	1.5	CO1
	enzymes in bioprocess		
	(A) Phosphorylation		
	(B) Isomerization		
	(C) Immobilization		
	(E) Acetylation		
Q 5	Induced fit model of enzyme action was proposed by	1.5	CO1
	(A) Emil Fischer		
	(B) Daniel Koshland		
	(C) Peter Mitchel		
	(D) Marie Curie		
Q 6	When the velocity of enzyme reaction equals to Vmax, substrate	1.5	CO1
	concentration [S] is		
	(A) Half of Km		

	(B) Equal to Km		
	(C) Twice the Km		
	(E) Far above the Km		
Q 7	Regulation of some enzymes by covalent modification involves	1.5	CO1
	addition or removal of	-	
	(A) Acetate		
	(B) Sulfate		
	(C) Phosphate		
	(D) Nitrogen		
Q 8	Enlist biomarker enzymes for myocardial infarction.	1.5	CO1
Q 9	Recall the name of enzyme which was first crystalized.	1.5	CO1
Q 10	List the name of any enzyme with its coenzyme.	1.5	CO1
Q 11	Define Entropy.	1.5	CO2
Q 12	Isozymes are the enzymes that catalyze different reactions but	1.5	CO2
	are encoded by same gene (True/False).		
Q 13	Explain Endergonic reaction with an example.	1.5	CO2
Q 14	Define 1 unit (1U) of enzyme activity.	1.5	CO2
Q 15	Enlist name of enzyme and its microbial source used in detergent	1.5	CO2
•	industry.		
Q 16	Enlist different factors affecting enzyme activity.	1.5	CO2
Q 17	Define Allosteric enzymes.	1.5	CO2
Q 18	Define catalytic antibodies with an example.	1.5	CO2
Q 19	Briefly explain steady state theory.	1.5	CO2
Q 20	Define turnover number.	1.5	CO2
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Define immobilization and discuss its industrial importance.	2+3	CO1
Q 2	Explain the role of enzymes in diagnostics with an example.	5	CO1
Q 3	Derive the Lineweaver-Burk plot equation and explain its	3+2	CO2
	significance.		
Q 4	Define Biosensor. Explain how biosensors can be used for	2+3	CO2
	detection of target analyte.		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Classify enzymes in different categories with examples. Explain	10+5	CO3
	concerted model with a schematic.		
Q 2	What enzyme does. How enzymes operate. On the diagram	2+4+3+6	CO4
	shown comparing the same reaction in the presence (catalyzed)		
	and absence (uncatalyzed) of an enzyme, Label A, B, C, D, E and		
	F.		

