Name: Enrolment No:				
	UNIVERSITY OF PETROLEUM AND ENERGY STU	UDIES		
	End Semester Examination, May 2023			
Course: Advanced Instrumentation Techniques Program: M.Sc.(N&D)		Semester: II Duration: 3 Hours		
Instruc S. No.	Section A	Marks	COs	
5.110.		WIAI KS	0.08	
	Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks)			
Q1	Which of the following is not true about Fourier Transform	1.5	CO1	
	Infrared (FTIR) spectrometer?			
	a) It is of non-dispersive type			
	b) It is useful where repetitive analysis is required			
	c) Size has been reduced over the years			
	d) Size has increased over the years			
Q2	The number of soluble solids that are dissolved within a	1.5	CO1	
	substance. It is determined using –			
	a) Penetrometer			
	b) Refractometer			
	c) Thermometer			
	d) pH meter	1.5	0.01	
Q3	Which of the following is not the advantage of Fourier	1.5	CO1	
	Transform Spectrometers?			
	a) Signal to noise ratio is high			
	b) Information could be obtained on all frequencies			
	c) Retrieval of data is possible			
04	d) Easy to maintain	1.5	CO1	
Q4	Computers accept analog signals directly. a) True	1.5	COI	
	b) False			
Q5	Why is the computer necessary in Fourier Transform	1.5	CO1	
QJ	Spectrometer?	1.5	COI	
	a) To display the detector output			
	b) To process the detector output			
	c) To determine the amplitude			
	d) To determine the frequency			
	······································		1	

Q6	Chromatography is a physical method that is used to separate	1.5	CO2
	and analysea) Simple mixtures		
	b) Complex mixtures		
	c) Viscous mixtures		
	d) Metals		
Q7	In chromatography, which of the following can the mobile phase	1.5	CO2
Q'	be made of?	1.5	02
	a) Solid or liquid		
	b) Liquid or gas		
	c) Gas only		
	d) Liquid only		
Q8	Evaporation, desiccation and dehydration all mean the same	1.5	CO2
Qo	thing.	1.5	02
	a) True		
	b) False		
00	· ·	1.5	CO2
Q9	Pure water is known to be which of the following?	1.5	02
	a) Weak electrolyte		
	b) Strong electrolyte		
	c) Neither weak nor strong d) Not on clostrolyte		
010	d) Not an electrolyte The wavelength of absorbed rediction is called as	1.5	CO2
Q10	The wavelength of absorbed radiation is called as	1.5	02
	a) Phosphorescenceb) Fluorescence		
	,		
	c) Emission wavelengthd) Excitation wavelength		
011	d) Excitation wavelength	1.5	<u> </u>
Q11	a) Vitamin-A	1.5	CO3
	· ·		
	b) Proteins		
	c) Carbohydratesd) Fats		
012	,	1.5	CO5
Q12	What type of method is the spectroscopic technique? a) Instrumental methods	1.5	COS
012		15	<u> </u>
Q13	When do we use Buffer Solution?	1.5	CO3
	a) To make the solution paidiab) To make the solution paidia		
	b) To make the solution acidic		
	c) To prevent solution's pH changed) None of the above		
	d) None of the above		

Q14	What does QA and QC stand for?	1.5	CO3			
	a) Quality assurance and Queuing control					
	b) Quality adjustment and Quality completion					
	c) Quality assurance and Quality control					
	d) Quality adjustment and Queuing control					
Q15	Total ash content provides information on	1.5	CO5			
	a) salt content					
	b) mineral content					
	c) siliceous matter					
	d) all of the above					
Q16	Which of the following options is CORRECT in terms of	1.5	CO4			
	wavelength for the different types of IR spectrometer?					
	a) Near IR: $0.8 - 2.5 \mu m$					
	b) Mid IR: 0.8 – 2.5 μm					
	c) Far IR: $2.5 - 50 \mu m$					
	d) Mid IR: 50 – 100 μm					
Q17	In Turbidimetry, the intensity of the transmitted light is usually	1.5	CO4			
	measure at angle					
	a) 90°					
	b) 45°					
	c) 135°					
	d) 180°					
Q18	The principle involved in turbidimetry is the measurement of	1.5	CO3			
	a) Absorbed light					
	b) Scattered light					
	c) Emitted light					
	d) Transmitted light					
Q19	What kind of vibrational changes occur at lower frequency in IR	1.5	CO4			
	spectroscopy?					
	a) Stretching vibration					
	b) Bending or stretching depending on the media					
	c) Bending Vibrations					
	d) None of above					
Q20	UV Spectroscopy is working on which principle.	1.5	CO5			
	a) Partition					
	b) Absorption					
	c) Adsorption					
	d) Emission					
	Section B					
(4Qx5M=20 Marks)						

Q 1	What are the different methods of turbidity analysis? Describe	5	CO4
Q I	What are the different methods of turbidity analysis? Describe three in detail.	5	04
0.2		5	CO5
Q 2	Why chemical analysis is required? Describe its steps.	_	
Q 3	Describe sampling process. What are the different sampling	5	CO3
	techniques. Describe briefly.		
Q 4	What is the importance of color analysis? Describe different	5	CO1
	methods for this.		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Ravi owns a food processing unit for multiple food products.	15	CO5
	a) Write down different physicochemical properties that can be		
	analysed for a particular food product (Choose any of your		
	choice). (5 marks)		
	b) Describe the principle and working of five different		
	instruments that can used for analysis of that food product.		
	(10 marks)		
Q 2	Sunil owns a fruit and vegetable processing unit. Answer the	15	CO4
	following questions:		
	a) Describe all the proximate properties that can be analysed		
	for a food product. (5 marks)		
	b) Describe the principle and methods of analysis for all		
	proximate components. (10 marks)		
	Section D		
	(2Qx10M=20 Marks)		
Q 1	What is FTIR? Describe the components of FTIR equipment and	10	CO2
	its working.		
Q 2	Describe the methods moisture content analysis with its	10	CO3
	principles.		