Name:	W UPES
Enrolment No:	UNIVERSITY OF TOMORROW

UPES

End Semester Examination, May 2023

Course: Instrumentation in Microbiology

Semester: II

Program: MSc Nutrition and Dietetics

Duration: 3 Hours

Course Code: HSMB70210 Max. Marks: 100

Instructions:

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	In a microtiter well plate, you have added 200 uL of a liquid	1.5	CO1
	sample. The path length is dependent on:		
	A. Diameter of the well.		
	B. Height of the well		
	C. Volume of liquid in the well.		
	D. All of the above		
Q2	The neutral atoms of all isotopes of the same element contain	1.5	CO2
	the same number of		
	A. Neutrons		
	B. Electrons		
	C. Mass numbers		
	D. Masses		
Q3	The atomic number is not changed by which type of	1.5	CO2
	radioactive decay.		
	A. Beta		
	B. Gamma		
	C. Alpha		
	D. The atomic number is affected by all forms of		
	radioactive decay		

Q4	If proteins are separated according to their electrophoretic	1.5	CO3
	mobility then the type of electrophoresis is:		
	A. SDS PAGE		
	B. Affinity Electrophoresis		
	C. Electro focusing		
	D. Free flow electrophoresis		
Q5	In SDS-PAGE, protein sample is first treated with detergent	1.5	CO3
	sodium dodecyl sulfate (SDS), in order to		
	A. Make the protein become negatively charged.		
	B. Make the protein become positively charged.		
	C. Renature the protein.		
	D. Adjust the pH of protein.		
Q6	The pH of SDS-PAGE stacking gel is:	1.5	CO3
_	A. 6.8		
	В. 8.8		
	C. 10		
	D. 6		
Q7	The source of Taq polymerase is from the bacterium:	1.5	CO2
	A. Thermus aquaticus		
	B. Bacillus cereus		
	C. Bacillus stearothermohilus		
	D. Clostridium botulinum		
Q8	A protein gives 100 kDa molecular mass in native-PAGE but	1.5	CO2
	two bands in SDS-PAGE corresponding to 25 kDa and 50		
	The oligomeric Protein thus have subunits.		
	A. 1		
	B. 2		
	C. 3		
	D. 4		
Q9	The unit of Molar extinction coefficient is:	1.5	CO1
	A. L mol ⁻¹ cm ⁻¹		
	B. M ⁻¹ cm ⁻¹		
	C. A & B		
	D. cm $M^{-1} L^{-1}$		
Q10	Amino acids detected by spraying the plate with ninhydrin	1.5	CO3
	solution is an example of		
	A. Column chromatography		
	B. Thin layer chromatography		
	C. Paper chromatography		
İ	D. Liquid chromatography		

Q11	Which of the following is not a limitation of Beer Lambert's	1.5	CO1
	law, which gives the relation between absorption, thickness,		
	and concentration?		
	A. Concentration must be lower		
	B. Radiation must have higher bandwidth		
	C. Radiation source must be monochromatic		
	D. Does not consider factors other than thickness and		
	concentration that affect absorbance		
Q12	Transmittance is given as $T = P/Po$. If Po is the power	1.5	CO1
	incident on the sample, what does P represent?		
	A. Radiant power transmitted by the sample		
	B. Radiant power absorbed by the sample		
	C. Sum of powers absorbed and scattered		
	D. Sum of powers transmitted and reflected		
Q13	Differential centrifugation is based on the differences in	1.5	CO1
	of biological particles of different:		
	A. Size, density.		
	B. Sedimentation rate, sizes and density.		
	C. Size, structure.		
	D. Mass, size.		
Q14	Which of the following has the highest energy?	1.5	CO1
	A. light with a long wavelength		
	B. light with an intermediate wavelength		
	C. light with a short wavelength		
	D. It is impossible to tell from the information given.		
Q15	Which type of microscope would be the best choice for	1.5	CO1
	viewing very small surface structures of a cell?		
	A. transmission electron microscope		
	B. scanning electron microscope		
	C. brightfield microscope		
	D. darkfield microscope		
	E. phase-contrast microscope		
Q16	Which is the principle difference (in the properties) that	1.5	CO1
	influences centrifugation:		
	A. Densities		
	B. Interfacial tension		
	C. Particle size		
	D. Viscosities		

Q17	The centrifugal effect counteracts one of the following forces	1.5	CO1
	A. Brownian forces		
	B. Cohesive forces		
	C. Electrostatic forces		
	D. Gravitational forces		
Q18	Which of the following centrifugation is used to separate	1.5	CO1
	certain organelles from whole cell?		
	A. Rate-zonal centrifugation		
	B. Normal centrifugation		
	C. Differential centrifugation		
	D. Isopycnic centrifugation		
Q19	Which of the following is not correct for reversed phase	1.5	CO3
	HPLC:		
	A. Relatively non-polar stationary phase		
	B. Relatively polar mobile phase		
	C. Methanol for acidic compounds in mobile phase		
	D. Acetonitrile for acidic compounds in mobile phase		
Q20	The relative adsorption of each component of the mixture is	1.5	CO3
	expressed in terms of its		
	A. Acceleration factor		
	B. Retardation factor		
	C. Both acceleration and retardation factor		
	D. None of the mentioned		

	Section B			
	(4Qx5M=20 Marks)			
Q 1	A. Define Beer-Lamberts law.	5	CO1	
	B. What is the difference between a single beam and double spectrophotometer.	(2+3)		
Q2	A. What is radioactivity?	5	CO2	
	B. What is the half-life of a radioisotope.	(1+1+2+1		
	C. What is the difference between CPM and DPM?)		
	D. State the SI unit of radioactivity.			
Q3	A. What is microbial metagenomics?	5	CO3	
	B. How is metagenomics applicable for food technology?	(2+3)		
Q4	A. What is the principle of Centrifugation?	5	CO1	
עי	B. State the difference between RCF and RPM.	(3+2)	CO1	

	Section C			
Q1	A. Identify the type of microscopy from above image. B. What is the source of illumination in above microscope? C. Describe the working principle of above microscope with a schematic diagram. D. Write down the procedure of sample preparation for above microscopy.	15 (2+2+8+3)	CO1	
Q2	 A. Identify the type of chormatography from above figure. B. What are the essential components of the above instrument? C. Write down the working principle of above chromatography. D. What is the difference between an isocratic and gradient system? E. What are the applications of this technique in Food Technology. 	15 (2+4+4+3 +2)	CO3	

	Section D			
	(2Qx10M=20 Marks)			
Q 1	A. Define Fluorescence.	10	CO1	
	B. Write down the working principle of an	(2+6+2)		
	Epifluorescent microscopy with a schematic			
	diagram?			
	C. Name some fluorescent stains used for direct			
	enumeration of bacteria in a food sample using			
	Epifluorescent microscopy.			
Q2	A. What is PCR?	10	CO3	
	B. Explain the basic principle of PCR technique with a	(2+6+2)		
	schematic diagram?			
	C. What are the applications of PCR in food technology.			