Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Instrumentation in Microbiology **Program:** M.Sc. (Microbiology) **Course Code:** HSMB7015 Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: Read question carefully.

	SECTION A		
S. No.	MCQ's /Fill in the blanks/ True & False (1.5 marks each)	30 Marks	СО
1	A researcher is trying to alter five successive base pairs in the middle of a PCR amplified DNA fragments. PCR mutagenesis is the most recommended for performing such experimentTrue/False	1.5	CO3
2	PCR needs thermal cycling, and the heat-stable (Taq) polymerases, will not denature to lose efficacy in DNA polymerization during the high temperature (95°C) step True/False	1.5	CO3
3	 Why are vent polymerase and Pfu more efficient than the Taq polymerase? (a) Because of proofreading activity (b) Because of more efficient polymerase activity (c) Both a and b (d) None of the above 	1.5	CO3
4	The pH at which a protein carries a net zero charge is termed as	1.5	CO3
5	 What is the main purpose of polymerase chain reaction (PCR) in molecular biology? a) Separating DNA fragments b) Amplifying DNA sequences c) Purifying DNA samples d) Analyzing protein samples 	1.5	CO3
6	 Which technique uses a pH gradient to separate proteins based on their isoelectric points? a) PCR b) Isoelectric focusing c) Centrifugation d) Gel electrophoresis 	1.5	CO3
7	is the first stage of the two-stage two-dimensional PAGE?	1.5	CO3
8	 Which enzyme is commonly used in polymerase chain reaction (PCR) to synthesize new DNA strands? a) DNA polymerase b) RNA polymerase c) Reverse transcriptase d) Ligase 	1.5	CO3

9	What is the purpose of a DNA ladder in gel electrophoresis?		
	a) To measure the size of DNA fragments	1 5	001
	b) To amplify DNA sequencesc) To separate proteins based on their isoelectric points	1.5	CO3
	d) To separate DNA fragments based on their size		
10	Isopycnic or equal density centrifugation is achieved in	1.5	CO1
11	is used for the detection of particular protein in total cell lysate.	1.5	CO1
12	Which of the following is NOT a type of gel used in gel electrophoresis?		
	a) Agarose		
	b) Polyacrylamide	1.5	CO2
	c) Sephadex		
13	d) AgarUltrastructure of a cell organelle can best be studied through transmission electron microscope	1.5	CO1
	(TEM)True/False		
[4	Buoyant density centrifugation is carried out at centrifugal force of for hours.	1.5	CO1
15	Organelles can be separated from cell homogenate through density gradient centrifugation True/False	1.5	CO1
16	What is the purpose of a control sample in gel electrophoresis?		
	a) To measure the size of DNA fragmentsb) To amplify DNA sequences	1.5	CO2
	c) To separate proteins based on their isoelectric points	1.5	02
	d) To compare with experimental samples for interpretation of results		
7	What is the main advantage of isoelectric focusing over other electrophoresis		
	techniques?		
	a) Higher resolution for large DNA fragments	1.5	CO2
	b) Ability to separate proteins based on both size and chargec) Faster results		
	d) Lower cost		
18	In SDS-PAGE, sodium dodecyl sulfate (SDS) is used to break bonds of proteins.	1.5	CO2
19	What is the role of Ammonium per sulphate (APS) in SDS-PAGE?	1.5	CO2
20	What is the function of DNA loading dye in agarose gel electrophoresis?	1.5	CO2
	SECTION B (5 marks each question)		
Q	Short Answer Type Question (5 marks each) Scan and Upload 4 questions 5 marks.	20	~ ~
×	Word limit (100-120)	Marks	CO
l	Mention the difference between rate-zonal and isopycnic centrifugation.	5	CO1
2	Write down the different types of polymerase chain reaction (PCR) and their respective	5 (2+3)	CO2
3	applications in molecular diagnostics.Write different designs of Pulsed-field gel electrophoresis (PFGE). Mention the applications		
)	of PFGE.	5 (3+2)	CO3
1	Provide a comparative analysis between Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM).	5	CO1
	SECTION C 30 marks	I	
	Two case studies 15 marks each subsections	30	СО
Q	I wo case studies 13 marks each subsections		

1	 Case Study 1 (Word limit-250-300) You are amplifying a portion of blood group antigen binding adhesin A (BabA) gene from <i>Helicobacter pylori</i> by polymerase chain reaction (PCR). The organism was isolated from the stool samples of an infected individual. After the agarose gel electrophoresis of amplified PCR products, you observed non-specific amplification or smear. Q1: What could be the reasons behind the observation? Q2: How are you going to troubleshoot the problem? Q3: What is primer dimer? Q4: What is nested PCR? Q5: Why bovine serum albumin (BSA) was added in a PCR reaction? 	15 (4+4+2 +3+2)	CO3
2	 Case Study 2 (Word limit- 250-300) Assume that you are performing an Immunofluorescence assay (IFA) to study the localization of a target protein inside a cell. Post of your sample preparation and followed by imaging through fluorescent microscopy, you have identified any one of the following problems: A. No fluorescence was observed. B. A thin outline of fluorescence on the surface of the cell was visible under microscope. C. Cell shape is distorted. Q1: What could be the reasons behind the observations of A, B and C. (3x2) Q2: Provide potential troubleshooting for each of the cases (A, B and C). (3x3) 	15 (6+9)	CO1
	SECTION- D 20 marks		
Q	Long Answer type Questions Scan and Upload (10 marks each) Word limit 200-250	20 Marks	СО
1	 You are working in a microbiology laboratory and have been asked to analyze a bacterial sample for DNA fingerprinting using pulse field gel electrophoresis (PFGE). Q1: List the equipment and reagents you would need for performing PFGE. Q2: Write down the step-by-step procedure for performing PFGE on the bacterial sample. Q3: Discuss the advantages and limitations of PFGE as a molecular typing method in bacterial identification. 	10 (3+4+3)	CO3
2	 Assume that you are analyzing the expression of your target protein in whole cell lysate of transformed bacterial cells by SDS-PAGE followed by Western Blotting using specific antibodies. Post development of your blot, you have identified any one of the following problems: A: Nonspecific or diffuse bands B: Weak or no bands C: High background in blot 	10 (3+6+1)	CO3

Q1: Provide inference for the observation of A, B and C (3x1)	
Q2: Analyze the above observations and potential troubleshooting for these. (3x2)	
Q3: If TEMED (tetramethylethylenediamine) is not added in SDS-PAGE gel, what could be	
the consequence?	