Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2023

Course: Diagnostic Microbiology Program: M. Sc. Microbiology Course Code: HSMB 7016 Semester: II Duration: 3 Hours Max. Marks: 100

Instructions: Read all questions carefully

S. No.	Section A	Marks	Cos
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	All of the clinical specimens submitted to the medical	1.5	CO1
	laboratory must be		
	(A) properly and carefully collected		
	(B) properly transported to the laboratory		
	(C) properly labeled		
	(D) all the above		
Q 2	Specimens collected for the laboratory diagnosis of	1.5	CO1
	dermatophytes (Fungal infection)		
	(A) Nail clippings (B) Skin scrapings (C) Blood (D) A and B		
Q 3	Which of the following statements about urine culture is	1.5	CO1
	incorrect?		
	(A) The best type of specimen is a clean-catch midstream urine		
	(B) There are three parts to a urine culture		
	(C) The container into which the patient urinates should be		
	sterile		
	(D) A white blood cell count is part of the urine culture		
Q 4	Bacterial toxins that are lipopolysaccharides in nature and are	1.5	CO1
	an integral part of the bacterial cell wall are called		
	(A) Exotoxins (B) Toxin (C) Endotoxin (D) Virulence factor		
Q 5	Which of the following is a good example of a selective	1.5	CO1
	medium?		
	(A) Blood agar (B) Chocolate agar (C) MacConkey agar		
	Fixation of a specimen to a slide accomplishes all of the		
	following except		

	· · · · · · · · · · · · · · · · · · ·		
	(A) killing the organism (B) anchoring the smear to the slide		
	(C) causing the organism to change to a pink or blue colour		
	(D) preserving the morphology of the cells		
Q 6	Gram-positive bacteria stain blue to purple because	1.5	CO1
	(A) they possess a thick layer of peptidoglycan, making it		
	difficult to remove the crystal violet-iodine complex during the		
	decolorization step		
	(B) they possess a thick layer of cellulose, making it difficult		
	to remove the crystal violet-iodine complex during the		
	decolorization step		
	(C) they are unable to take up the safranin stain		
	(D) none of the above		
Q 7	In negative staining, the glass of the slide will stain while	1.5	CO1
	bacteria will not. (True/False).		
Q 8	Bacterial endospores are a	1.5	CO1
	(A) means of reproduction (B) survival mechanism		
	(C) means to inactivate antimicrobial agents		
	(D) means of locomotion		
Q 9	In which of the following immunodiagnostic techniques are	1.5	CO1
	visible masses or "clumps" of particles observed when an		
	antigen-antibody reaction has occurred?		
	(A) Complement fixation technique		
	(B) Agglutination technique		
	(C) Precipitation technique		
	(D) None of the above		
Q 10	Synergistic interactions are:	1.5	CO2
	(A) two chemicals cancelling each other out.		
	(B) two chemicals combining into a chemical with more than		
	double the effect.		
	(C) two chemicals that do not interact.		
	(D) one chemical maximizing the effect of another one		
	two chemicals adding up their individual effects		
Q 11	Which of the following methods of antimicrobial susceptibility	1.5	CO2
	testing requires that zone sizes be measured?		
	(A) Agar dilution method (B) Broth macrodilution method		
	(C) Broth microdilution method (D) Disk diffusion method		
Q 12	Define nosocomial pathogen with example.	1.5	CO2
Q 13	KOH Wet mount method is used to stain	1.5	CO2
Q 14	Label the below given diagram:	1.5	CO2

Q 15	Ag-Ab reaction involves specific interaction of of an antigen with the corresponding of antibody.	1.5	CO2
Q 16	Saline wet mount method is used for detection and identification of	1.5	CO2
Q 17	In RAPD assay, a short primer sequence binds at multiple sites of the target sequence and amplify the same. Look into the figure and tell us which region will be amplified:	1.5	CO2
Q 18	In the given below figure Label A, B, C indicate? Agar gel on a slide Spur formation (indicates A Fusion of bands (indicates B Antiserum in a well Crossover of bands (indicates C Antigens in well	1.5	CO2
Q 19	Label (A, B and C) the below given diagram:	1.5	CO3

Q 20	Antibody excess Antibody excess Antibody excess Antigen and antibody B The results of a broth microdilution susceptibility test are as follows: Tube Conc. Growth 1 $2 \mu M$ Yes 2 $4 \mu M$ Yes 3 $8 \mu M$ Yes 4 $16 \mu M$ No 5 $32 \mu M$ No 6 $64 \mu M$ No What is the MIC for this drug? (A) $8ug/mL$ (B) $16ug/mL$ (C) > $16ug/mL$ (D) None of the above	1.5	CO3
Section B (4Qx5M=20 Marks)			
Q 1	Define MIC and discuss the microbroth dilution method of MIC determination.	5	CO1
Q 2	List any five bacterial diseases and the associated causative agent.	5	CO2
Q 3	Write the collection procedure for nasopharynx and urine samples.	5	CO4
Q 4	Explain the principle and procedure of isolation <i>Neisseria</i> gonorrheae by modified Thayer Martin Agar.	5	CO5
Section C (2Qx15M=30 Marks)			
Q 1	 (A) Differentiate between: (i) Prevalence and incidence with example. 	10+5	CO3

Q 2	 (ii) Microscan Walkaway and BD-Phoenix identification system (B) Briefly explain how you can diagnose β-hemolytic streptococci group A (<i>Streptococcus pyrogens</i>) in a clinical laboratory. 1. An individual is infected with an unidentified bacterial pathogen. You have access to his blood sample and a 	15	CO6	
	wound swab. To identify the pathogen, explain any molecular assay that you would perform, using the blood sample and justify the selection of your assays.2. You have isolated a new bacterium which might produce shiga toxin. Explain how you will diagnose new bacteria and the confirmation of toxin produced by this bacterium.			
	Section D			
	(2Qx10M=20 Marks)			
Q 1	Compare the principle of different types of ELISA (Direct,	10	CO4	
	indirect and sandwich) with illustrations.			
Q 2	Write the principle of procedure of IMViC test for identification of Enterobacteriaceae family.	10	CO5	