	r	
	ame	•
1.4	ame	•

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Environmental & Agricultural Microbiology

Semester: II

Program: MSc Microbiology

Duration: 3 Hours

Course Code: HSMB7031 Max. Marks: 100

Instructions:

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	The region where the soil and root make contact is designated as:	1.5	CO1
	A. Rhizosphere		
	B. Lithosphere		
	C, Hydrosphere		
	D. Xerosphere		
Q2	The correct stoichiometric equation representing Biological	1.5	CO5
	Nitrogen fixation is:		
	A. $N_2 + 8H^+ + 8e^- + 16 \text{ ATP} \rightarrow 2NH_3 + H_2 + 16ADP + 16 P_i$		
	B. $N_2 + 4H^+ + 4e^- + 8 ATP \rightarrow NH_3 + 1/2H_2 + 8ADP + 8 P_i$		
	C. $2N_2 + 12H^+ + 12e^- + 32 \text{ ATP} \rightarrow 6NH_3 + H_2 + 34ADP + 34 P_i$		
	D. $N_2 + H^+ + e^- + 8 \text{ ATP} \rightarrow NH_3 + H_2 + 8ADP + 8 P_i$		
Q3	Which of the following in sewage treatment removes suspended	1.5	CO6
	solids?		
	A. Tertiary treatment		
	B. Primary treatment		
	C. Secondary treatment		
	D. Sludge treatment		
Q4	Organic matter (humus) is an important part of soil as:	1.5	CO1
	A. It helps to improve water infiltration		
	B. It can break down organic pollutants		
	C. It converts nitrogen in the air into nitrates used by plants		
	D. It is rich in nutrients, which is important for fertility		
Q5	The following is a promising biocontrol agent against multiple plant	1.5	CO1
	pathogens:		
	A. Aspergillus flavus		
	B. Penicillium notatum		
	C. Trichoderma spp.		
	D. Fusarium oxysporum		

Q6	Flooded rice paddies are one of the major biogenic sources of	1.5	CO5
	atmospheric:		
	A. Nitrogen		
	B. Methane		
	C. Carbon-dioxide		
	D. All of the above		
Q7	Anoxygenic photosynthesis is characterized by:	1.5	CO5
	A. Utilization of reduced electron donors like H ₂ S, Fe (II) etc.		
	B. Photolysis of water		
	C. Generation of Oxygen		
	D. All of the above		GO.
Q8	The act of replenishing TCA cycle intermediates that have been	1.5	CO5
	extracted for biosynthesis is called:		
	A. Anaplerosis		
	B. Catabolism		
	C. Anabolism		
00	D. None of the above	1.5	001
Q9	Causative agent of Crown Gall is:	1.5	CO1
	A. Agrobacterium tumifaciens		
	B. Xanthomonas campestris		
	C. Erwinia amylovora		
Q10	D. E coli Which of the following group of viruses generally etteck plants?	1.5	CO1
QIU	Which of the following group of viruses generally attack plants? A. Retroviruses	1.5	COI
	B. Riboviruses		
	C. Rheoviruses		
	D. Enteroviruses		
Q11	Which of the following is the most influential factor affecting soil	1.5	CO1
V -1	formation?	1.0	001
	A. Parent material		
	B. Organisms		
	C. Time		
	D. Climate		
Q12	In which condition do organic acids cause iron to be transported	1.5	CO1
	downward through the soil profile?		
	A. Salinisation		
	B. Podzolisation		
	C. Laterisation		
	D. Gleying		
Q13	At a high pH which essential elements become insoluble and	1.5	CO1
	unavailable to plants?		
	A. Boron and Phosphorus		
	B. Boron and Iron		
	C. Copper and Zinc		
	D. Phosphorus and Magnesium		

Q14	Which fertilizer produces acidity in soil:	1.5	CO1
	A. Ammonium sulfate		
	B. Sodium nitrate		
	C. Calcium ammonium nitrate		
	D. Calcium nitrate		
Q15	Microorganism involved in conversion from nitrite to nitrate:	1.5	CO1
	A. Nitrosomonas		
	B. Nitrobactor		
	C. Pseudomonas		
	D. Bacillus		
Q16	Signaling molecules produced by Rhizobia during initiation of	1.5	CO2
	symbiosis with legume plants are:		
	A. Nod factors		
	B. Nif factors		
	C. Flavones		
	D. Leghemoglobin		
Q17	The most accurate method for quantifying diazotrophic flux of soil	1.5	CO2
	microbes and plants is by performing:		
	A. Acetylene reduction assay		
	B. Ammonia production test		
	C. NifH gene expression assay		
	D. ¹⁵ N isotope dilution method		
Q18	The symbiotic association of fungi and roots of higher plants is	1.5	CO4
	known as:		
	A. Lichen		
	B. Mycorrhiza		
	C. Rhizsophere		
	D. Endophytes		
Q19	Which nutrient influence the nodule formation and nitrogen	1.5	CO2
	fixation in soil?		
	A. pH		
	B. N		
	C. P		
	D. All of the above		
Q20	What is the term used to describe the process by which one	1.5	CO4
	microbe kills or inhibits the growth of another microbe?		
	a. Antagonism		
	b. Symbiosis		
	c. Mutualism		
	d. Commensalism		

	Section B		
	(4Qx5M=20 Marks)		
Q 1	A. Define Eh.	5	CO1
	B. Explain how changes in Eh-pH can control soil	(1+4)	
	microbial metabolism.		
Q2	A. What are PGPR?	5	CO2
	B. Write down the different characteristics of PGPR.	(2+3)	
Q3	A. What are mycorrhizae?	5	CO2
	B. Write down the differences between ectomycorrhizae	(1+3+1)	
	and endomycorrhizae?		
	C. What are Tree Wide Web?		
Q4	A. What is DNRA?	5	CO5
	B. State the importance of DNRA in soil	(3+2)	
	biogeochemistry and fertility.		

	Section C (2Qx15M=30 Marks)		
Q1	(2Qx15W1=30 Warks)	15	CO6
	 A. Identify the type of Pollution. B. What are the different in-situ techniques used for microbial remediation of above pollution? C. Describe key features of bacterial metabolic pathways involved in remediation. D. State different factors affecting microbial remediation 	(2+4+6+3)	
0.2	of above pollutants.	15	602
Q 2	Crystal protein (Cry) Bt spore	15 (1+6+6+2)	CO3
	(B)		
	Cry toxins Gut Lumen Body Cavity		
	Gut Lumen Body Cavity		
	A. What does the above figure represent?		
	B. State the mode of action in (A), (B) and (C) as seen in above figure.		
	C. Write down the steps involved in the recombinant production of Cry toxin with help of a schematic diagram.		
	D. Comment on evolved resistance and secondary pests.		

	Section D		
	(2Qx10M=20 Marks)		
Q 1	A. What are cable bacteria?	10	CO5
	B. Give two examples of their natural habitat?	(1+2+5+2)	
	B. Explain how does cable bacteria conserves energy		
	with the help of a schematic diagram?		
	C. What are the potential applications of cable bacteria?		
Q2	Bacteria isolated from a soil sample on Nutrient Agar	10	CO4
	medium represented a tiny fraction (<1%) of the total	(2+4+4)	
	bacterial population enumerated by direct microscopy.		
	A. What is the discrepancy between culturable plate		
	counts and total counts referred to as?		
	B. Why are most Bacteria not culturable?		
	C. Describe briefly the strategies that can be adopted to		
	increase culturability of soil bacteria.		