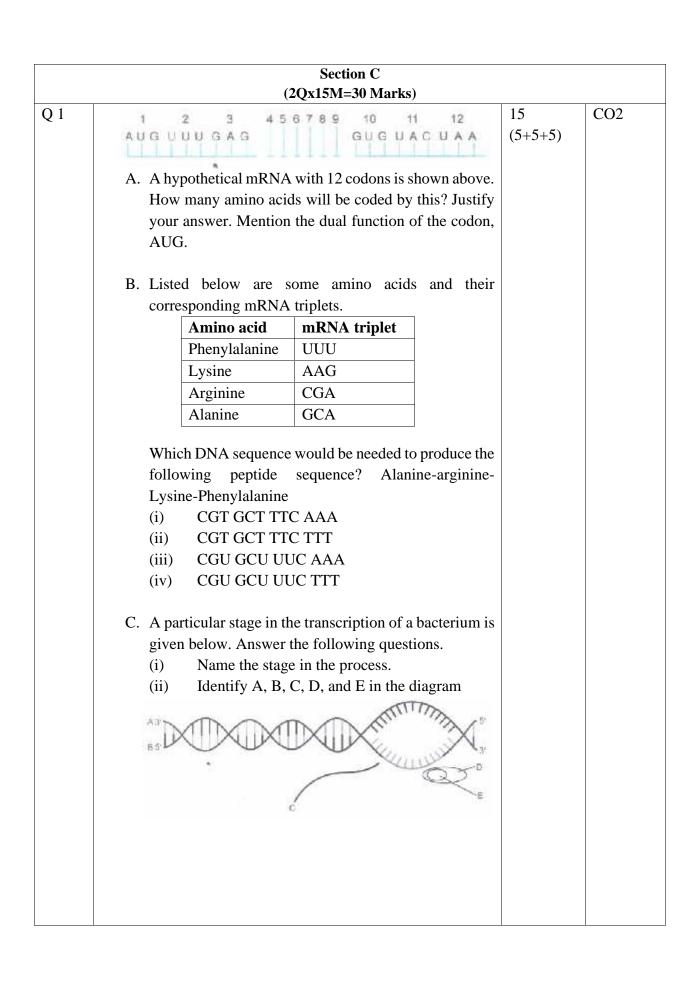
Name:

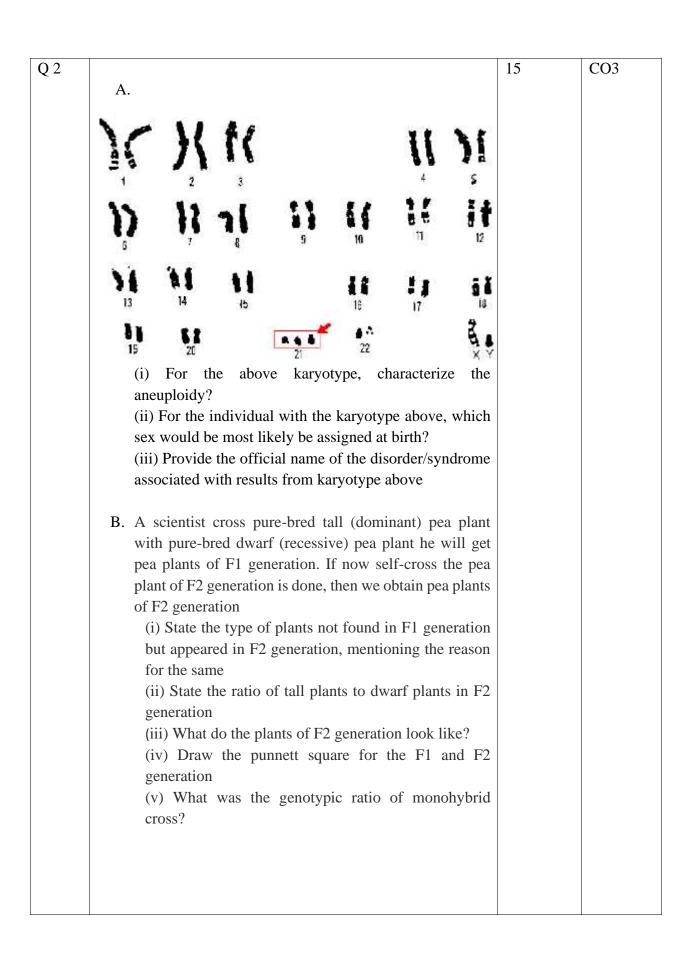
Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2023

Course: Molecular Biology and Genetics


Semester : II Program: M.Sc. Microbiology Duration : 3 Hours Course Code: HSMB7026 Max. Marks: 100


Instructions: Read all questions carefully

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks)		
(A) Conservative and unidirectional			
	(B) Semiconservative and unidirectional		
	(C) Conservative and bidirectional		
	(D) Semiconservative and bidirectional		
Q 2	When DNA replication starts	1.5	CO1
	(A) The phosphodiester bonds between the adjacent		
	nucleotides break		
	(B) The bonds between the nitrogen base and deoxyribose		
	sugar break		
	(C) The leading strand produces Okazaki fragments		
	(D) The hydrogen bonds between the nucleotides of two-		
	strands break		
Q 3	Unwinding of DNA is done by	1.5	CO1
	(A) Helicase (B) Ligase (C) Hexonuclease (D) Topoisomerase		
Q 4	The process involved in the RNA formation on the DNA	1.5	CO1
	template is		
	(A) Transcription (B) Translation		
	(C) Replication (D) Transformation		
Q 5	A promoter site on DNA	1.5	CO2
	(A) Initiates transcription (B) Regulates termination		
	(C) Codes for RNA (D) Transcribes repressor		
Q 6	The Sigma factor is a component of	1.5	CO2
	(A) DNA ligase (B) DNA polymerase (C) RNA polymerase		
	(D) Endonuclease		

Q 7	Which site of tRNA molecule hydrogen bonds to a mRNA molecule?	1.5	CO2
	(A) Codon (B) Anticodon (C) 5'end of the tRNA molecule		
	(D) 3'end of the tRNA molecule		
Q 8	Genetic code is	1.5	CO2
	(A) the sequence of nitrogenous bases in mRNA molecule that		
	codes for a protein		
	(B) is a triplet code (C) is non-overlapping		
	(D) all of these		
Q 9	During translation, proteins are synthesized	1.5	CO3
	(A) by ribosomes using the information on DNA		
	(B) by lysosome using the information on DNA		
	(C) by ribosomes using the information on mRNA		
	(D) by ribosomes using the information on rRNA		
Q 10	Which of the following RNA molecules serves as an adaptor	1.5	CO3
	molecule during protein synthesis?		
	(A) rRNA (B) mRNA (C) tRNA (D) Both B and C		
Q 11	Which energy rich molecule required for initiation of	1.5	CO3
	translation?		
	(A) ATP (B) GTP (C) CTP (D) AMP		
Q 12	Tetracycline blocks protein synthesis by	1.5	CO3
	(A) inhibiting binding of aminoacyl tRNA to ribosome		
	(B) inhibiting initiation of translation		
	(C) inhibiting peptidyl transferase		
	(D) inhibiting translocase enzyme		
Q 13	Which of the following biomolecules has self-repair	1.5	CO4
	mechanisms?		
	(A) DNA, RNA and protein		
	(B) DNA and RNA		
	(C) DNA only		
	(D) DNA and proteins		
Q 14	After bound to the mRNA eukaryotic ribosome scans the entire	1.5	CO4
	mRNA until it encounters a start codon		
	(A) True (B) False		
Q 15	How many loops are seen in the tRNA?	1.5	CO4
	(A) 1 (B) 2 (C) 3 (D) 4		
Q 16	Which of the following component of splicosome recognizes	1.5	CO4
	the 3'splice site?		
	(A) U2 (B) U2AF (C) BBP (D) U4		

	In man, which of the following genotypes and phenotypes may	1.5	CO5
	be the correct result of aneuploidy in sex chromosomes?		
	(A) 22 pairs + Y females (B) 22 pairs + XX females		
	(C) 22 pairs + XXY males (D) 22 pairs + XXXY females		
Q 18	Which of the following would most likely cause a mutation with the greatest deleterious effect?	1.5	CO5
	(A) An insertion of a nucleotide triplet into a DNA strand that codes for an mRNA		
	(B) A single addition of a nucleotide in a DNA strand that codes for an mRNA		
	(C) A deletion of a nucleotide triplet from a DNA strand that codes for an mRNA(D) All of these		
Q 19	A woman with one gene for hemophilia and one gene for color	1.5	CO5
Q IJ	blindness on one of the X chromosomes marries a normal man. How will the progeny be??	1.5	
	(A) Hemophilic and color-blind daughters		
	(B) All sons and daughters are hemophilic and color blind		
	(C) 50% hemophilic and color-blind sons and 50% normal		
	sons		
	(D) 50% hemophilic color-blind sons and 50% color blind		
	daughter		
Q 20	The tendency of offspring to differ from parents is called	1.5	CO5
	(A) variation (B) heredity (C) inheritance (D) resemblance		
~ - °	(A) variation (b) hereuity (c) inheritance (b) resemblance		
	Section B (4Qx5M=20 Marks)		
	Section B	5	CO1
Q 1	Section B (4Qx5M=20 Marks)	5 5	CO1
Q 1 Q 2	Section B (4Qx5M=20 Marks) Draw the structure of tRNA and label the five loops? Differentiate the ribosomes & ribosomal subunits of		
Q 1 Q 2 Q 3 Q 4	Section B (4Qx5M=20 Marks) Draw the structure of tRNA and label the five loops? Differentiate the ribosomes & ribosomal subunits of prokaryotes and eukaryotes in detail.	5	CO2

	Section D			
(2Qx10M=20 Marks)				
Q 1	Differentiate between DNA and RNA in a tabular form. List	10	CO4	
	the different types of RNA and their functions.		CO4	
Q 2	Write the process of eukaryotic transcription in detail with an	10	CO5	
	illustration			