Name:		C	
Enroln	nent No:		
	UPES		
	End Semester Examination, May 2023		
Progra	m: B.Tech. Allied Health Sciences (Food, Biotech, Biomed) T Code: MECH 1006 N	emester: II `ime : 03 ⁄Iax. Marks: 10	
mstrut	SECTION A		
	(5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	How an open system is different from an adiabatic system?	4	CO1
Q 2	Schematically explain the difference between Nozzles and Diffusers?	4	CO2
Q 3 Q 4	Write two two statements of the second law of thermodynamics.	4	CO3
Q 4	How process can be defined as reversible, irreversible or impossibl	e	
	based on entropy generation (S _{gen})?	4	CO4
Q 5	Write any two Maxwell relations.	4	CO4
	SECTION B		
	(4Qx10M=40 Marks)		
Q 6	The properties of a closed system change following the relation between pressure and volume as $PV = 3.0$ where P is in bar V is in m ³ . Calculate the work done when the pressure increases from 1.5 bar to 7.3 bar.	5 10	CO1
Q 7	 5. A gas undergoes a thermodynamic cycle consisting of three processes: Process 1-2: constant volume, V = 0.028 m³, U₂-U₁ = 26.4kJ Process 2-3: expansion with PV = constant, U₃= U₂ Process 3-1: constant pressure, P = 1.4 bar, W₃₁ = -10.5 kJ There are no significant changes in kinetic or potential energy. (a) Sketch the cycle on a p-V diagram (b) Calculate the work done for the process 2-3 in kJ (c) Is this a Power Cycle or Refrigeration Cycle? Justify your answer. 	10 (2+4+4)	CO2
Q 8	A refrigerator maintains the temperature of the freezer compartment at 5 C when the air surrounding the refrigerator is at 22 °C. The rate of	- 10	CO3

Q 9	 heat transfer from the freezer compartment to the refrigerant is 8000 kJ/h and the power input required to operate the refrigerator is 3200 kJ/h. Determine if this refrigerator is working reversibly or irreversibly? 300 kJ/s of heat is supplied at a constant fixed temperature of 290°C to a heat engine. The heat rejection takes place at 8.5°C. The following results were obtained: (i) 215 kj/s are rejected (ii) 150 kj/s are rejected (iii) 75 kj/s are rejected Classify the results for a reversible or irreversible or impossible cycle (by applying Clausius inequality to the cycle or process). 	10	CO4
Q 10	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	20 (5+5+5+5)	C03
Q 11	 (c) Q_H = 700 kJ, W_{cycle} = 500 kJ, Q_C = 500 kJ (d) Q_H = 800 kJ, W_{cycle} = 600 kJ, Q_C = 200 kJ (a) Is throttling valve isenthalpic or isentropic device? Justify your answer. (b) 12 kg of air per minute is delivered by a centrifugal air compressor. The inlet and outlet conditions of air are V1 = 12 m/s, P1 = 1 bar, v1 = 0.5 m3/kg and V2 = 90 m/s, P2 = 8 bar, v2 = 0.14 m3/kg. The increase in enthalpy of air passing through the compressor is 150 kJ/kg and heat loss to the surroundings is 700 kJ/min. Find : (i) Motor power required to drive the compressor; (ii) Ratio of inlet to outlet pipe diameter. Assume that inlet and discharge lines are at the same level. 	20 (8+6+6)	CO2