Name: Enrolment No:		<u>VPES</u>			
		UPES Examination, May 2023			
Course Code: MATH1038 Max				nester: II x. Marks: 100 e:3 hours	
		SECTION A x4M=20Marks)			
	Instructions: All questions are con	· · · · · · · · · · · · · · · · · · ·	Marks	СО	
Q 1	Evaluate $\lim_{x \to 1} \frac{\sin(\pi x)}{\log x}$		4	CO2	
Q 2	Reduce the matrix $A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 4 & -1 \\ -1 & 0 & -1 \end{pmatrix}$ rank.	$\begin{pmatrix} -1 & 3 \\ 0 & -1 \\ -2 & 7 \end{pmatrix}$ to Echelon form, hence find its	4	CO5	
Q 3	Verify Rolle's mean value theorem for the function $f(x) = x(x+3)e^{-x/2}$ in the interval $-3 \le x \le 0$.		4	CO2	
Q 4	Evaluate $\int_{-\infty}^{0} \frac{1}{x^2+4} dx$. State whether the improper integral converges or diverges.		4	CO1	
Q 5	Apply Taylor's series to expand the $(x - \frac{\pi}{4})$.	function $f(x) = tanx$ in powers of	4	CO1	
SECTION B					
	(4Qx) Instructions: Section B contains 4	10M= 40 Marks) questions. Q9 has internal choice	Marks	CO	
Q 6	Examine the consistency of the syste 2x - x + 2	em and if consistent, solve the equations: y - z = 2 y + z = 2 y - 5z = 2		C05	
Q 7	Apply Cauchy root test to test the constant $\sum_{n=1}^{\infty} \frac{(n-1)^n}{(n-1)^n}$	provergence of the series $\frac{-\log n}{(2)^n \cdot n^n}$	10	CO2	
Q 8	Show that $\Gamma \frac{1}{2} = \sqrt{\pi}$		10	CO1	

Q 9	Divide 24 into three parts such that the continued product of the first, square of second and cube of third may be maximum. OR If $u = log(tanx + tany + tanz)$ then find the value of $sin2x \frac{\partial u}{\partial x} + sin2y \frac{\partial u}{\partial y} + sin2z \frac{\partial u}{\partial z}$				
			CO4		
SECTION-C (2Qx20M=40 Marks)					
	Instructions: Section C contains 2 questions. Q11 has internal choice		СО		
Q 10	Find half range sine series of $f(x) = e^{ax}$ in the interval $(0, \pi)$.		CO3		
Q 11	Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ and hence find A^{-1} .				
	OR	20			
	Find the Eigen values and Eigen vectors of the matrix,		CO5		
	$A = \begin{bmatrix} -2 & 2 & -3\\ 2 & 1 & -6\\ -1 & -2 & 0 \end{bmatrix}$				