Name: Enrolment No:	$\cdots \backsim \int_{\text {UNIVERSITY Of TOMORROW }}$		
\left.UPES End Semester Examination, May 2023$\right]$			
$\begin{gathered} \text { SECTION A } \\ (5 \mathrm{Qx} 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$			
	Instructions: All questions are compulsory.	Marks	CO
Q 1	Evaluate $\lim _{x \rightarrow 1} \frac{\sin (\pi x)}{\log x}$	4	$\mathrm{CO2}$
Q 2	Reduce the matrix $A=\left(\begin{array}{cccc}1 & 2 & -1 & 3 \\ 3 & 4 & 0 & -1 \\ -1 & 0 & -2 & 7\end{array}\right)$ to Echelon form, hence find its rank.	4	CO5
Q 3	Verify Rolle's mean value theorem for the function $f(x)=x(x+3) e^{-x / 2}$ in the interval $-3 \leq x \leq 0$.	4	CO2
Q 4	Evaluate $\int_{-\infty}^{0} \frac{1}{x^{2}+4} d x$. State whether the improper integral converges or diverges.	4	CO1
Q 5	Apply Taylor's series to expand the function $f(x)=\tan x$ in powers of $\left(x-\frac{\pi}{4}\right)$.	4	CO1
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
	Instructions: Section B contains 4 questions. Q9 has internal choice	Marks	CO
Q 6	Examine the consistency of the system and if consistent, solve the equations: $\begin{gathered} 2 x-y-z=2 \\ x+2 y+z=2 \\ 4 x-7 y-5 z=2 \end{gathered}$	10	CO5
Q 7	Apply Cauchy root test to test the convergence of the series $\sum_{n=1}^{\infty} \frac{(n-\log n)^{n}}{(2)^{n} \cdot n^{n}}$	10	CO2
Q 8	Show that $\Gamma \frac{1}{2}=\sqrt{\pi}$	10	$\mathrm{CO1}$

Q 9	Divide 24 into three parts such that the continued product of the first, square of second and cube of third may be maximum. OR If $u=\log (\tan x+\tan y+\tan z)$ then find the value of $\sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}+\sin 2 z \frac{\partial u}{\partial z}$	10	$\mathrm{CO4}$
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
	Instructions: Section \mathbf{C} contains 2 questions. Q11 has internal choice	Marks	CO
Q 10	Find half range sine series of $f(x)=e^{a x}$ in the interval $(0, \pi)$.	20	CO3
Q 11	Verify Cayley Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$ and hence find A^{-1}. OR Find the Eigen values and Eigen vectors of the matrix, $A=\left[\begin{array}{ccc} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{array}\right]$	20	$\mathrm{CO5}$

