Name: Enrolment No:			
Course: CAD/CAM Program: B Tech Mechanical Course Code: MEPD 4001		mester: me ax. Mar	$\begin{aligned} & \text { VIIII } \\ & 3 \mathrm{hrs} . \\ & : 100 \end{aligned}$
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Describe design-related tasks, which are performed by a modern computeraided design system.	4	CO1
Q 2	Discuss future trends in manufacturing.	4	CO1
Q 3	Draw and explain the coordinate system used by various NC machines.	4	CO1
Q 4	Explain the process of assembly of element matrices as applicable in finite element modeling.	4	CO1
Q 5	Illustrate point-to-point (PTP) and contouring operations in NC/CNC machining systems.	4	$\mathrm{CO4}$
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	A square having endpoints $\mathrm{A}(1,1), \mathrm{B}(6,1), \mathrm{C}(6,6)$, and $\mathrm{D}(1,6)$ is rotated by 50° in a clockwise direction keeping point $(6,1)$ fixed. Find the final coordinates.	10	CO2
Q 7	Derive Bresenhem's algorithms for the linear interpolation for graphic terminals.	10	CO 2
Q 8	Explain the concept of the three basic Boolean operations used in solid modeling. Draw neat sketches showing the effect of these operators on any two basic primitives.	10	$\mathrm{CO3}$
Q 9	Explain the adaptive control technique, used in CNC. OR How is cutter compensation given in the case of a machining center? Explain with the help of an example.	10	CO4

$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Determine the nodal displacement, element stresses, and support reactions of the axially loaded bar as shown in Figure. Take, $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{P}=30 \mathrm{kN}$ OR Determine the displacements of nodes 1 and 2 in the spring system shown in Fig.	20	CO 3
Q 11	Write the part program to drill the holes in the part shown in the figure. The part is 12 mm thick. Cutting speed $=1000 \mathrm{rpm}$ and feed is 12 . Use the lower left corner as the origin.	20	$\mathrm{CO5}$

