Name:		VPES			
Enrolment No:					
Course		UPES r Examination, May 2023 Semester: V	/111		
Course: Aircraft DesignSemester: VProgram: B. Tech Aerospace EngineeringTime 03 hrsCourse Code: ASEG 4004Max. MarksInstructions: Use of Design DATA is permitted. Assume appropriate value for missing DATA			s. s: 100		
SECTION A (5Qx4M=20Marks)					
S. No.		· · · · · · · · · · · · · · · · · · ·	Marks	CO	
Q 1	List airworthiness requirements of business Jet Aircraft		04	CO1	
Q 2	Compare different types Landing gears used in aircraft		04	CO2	
Q 3	Why staging is important for Launch vehicle?		04	CO4	
Q 4	Derive expression for gross take-off weight of aircraft.		04	CO3	
Q 5	Give expression for orbital velocity of launch vehicle considering all losses.		04	CO5	
		SECTION B 10M= 40 Marks)			
Q 6	Classify different types of seating arrange fuselage design? (provide neat sketches)	ement used in aircraft. How it affects	10	CO1	
Q 7	Obtain payload trade study of transport aircraft having following features: <i>Payload</i> weight=4000 kg; Estimated fuel fraction=0.381; Empty Weight fraction=0.85 $W_0^{-0.07}$.		10	CO2	
Q 8	An airplane has cruise velocity 300 m/s, wing loading-80 kg/m ² ; take-off weight=1000 kg. Also, design same Wing when Cruise velocity 100 m/s. Design the main Wing that would be suitable for this aircraft.		10	CO3	
Q 9	Compare overall <i>payload mass</i> to <i>initial</i> <i>stage</i> Launch Vehicles. Proved expression OR	<i>to mass</i> ratio for serial and parallel <i>multi</i> - ns for each case.	10	C05	

	Consider 2 stage launch vehicle with 1300 m ³ required volume. Estimate stage length, if stage diameter is 6m, 7 m, 8m and 10 m for single stage.		
	SECTION-C (1Qx40M=40 Marks)		
Q 10	Design an 2 trainer aircraft with following requirements: Maximum level speed at mid cruise 400 Km/hr		
	Range: 1500km Ceiling: 6000 meter Rate of climb at sea level 250 m/min		
	Stalling speed: 100 Km/hr Landing distance 700 m		
	Takeoff distance 800 m Airplane should be powered by one conventional reciprocating engine Given Mission profile as:		
	(provide three view sketches with Dimension of aircraft including Wing, Tail, fuselage, landing gears, Tires, etc.)		
	OR		
	For an aircraft of 180+capacity, the conventional seating (mixed class) would be five abreast for economy and four abreast for business, with a single aisle. For our executive layout, four abreast would be sensible. Design this aircraft with following performance requirements.	40	CO4
	Maximum level speed at mid cruise 450 Km/hr Range: 8000km Ceiling: 10000 meter		
	Rate of climb at sea level 100 m/min Stalling speed: 100 Km/hr		
	Landing distance 1800 m Takeoff distance 1800 m Airplane should be powered by one conventional reciprocating engine		
	Given Mission profile as:		
	(provide three view sketches with Dimension of aircraft including Wing, Tail, fuselage, landing gears, Tires, etc.)		