Name: Enrolment No:		Ⓤつ戸г	
UPES Course: Aircraft Design End Semester Examination, May 2023 Program: B. Tech Aerospace Engineering Semester: VIII Course Code: ASEG 4004 Time 03 hrs. Instructions: Use of Design DATAA is permitted. Assume appropriate value for missing DATA			
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$			
S. No.		Marks	CO
Q 1	List airworthiness requirements of business Jet Aircraft	04	CO1
Q 2	Compare different types Landing gears used in aircraft..	04	CO2
Q 3	Why staging is important for Launch vehicle?	04	CO4
Q 4	Derive expression for gross take-off weight of aircraft.	04	CO3
Q 5	Give expression for orbital velocity of launch vehicle considering all losses.	04	CO5
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Classify different types of seating arrangement used in aircraft. How it affects fuselage design? (provide neat sketches)	10	CO1
Q 7	Obtain payload trade study of transport aircraft having following features: Payload weight $=4000 \mathrm{~kg}$; Estimated fuel fraction=0.381; Empty Weight fraction $=0.85 \mathrm{~W}_{0}{ }^{-0.07}$.	10	CO2
Q 8	An airplane has cruise velocity $300 \mathrm{~m} / \mathrm{s}$, wing loading- $80 \mathrm{~kg} / \mathrm{m}^{2}$; take-off weight=1000 kg. Also, design same Wing when Cruise velocity $100 \mathrm{~m} / \mathrm{s}$. Design the main Wing that would be suitable for this aircraft.	10	CO3
Q 9	Compare overall payload mass to initial to mass ratio for serial and parallel multistage Launch Vehicles. Proved expressions for each case. OR	10	CO5

	Consider 2 stage launch vehicle with $1300 \mathrm{~m}^{3}$ required volume. Estimate stage length, if stage diameter is $6 \mathrm{~m}, 7 \mathrm{~m}, 8 \mathrm{~m}$ and 10 m for single stage.		
SECTION-C (1Qx40M=40 Marks)			
Q 10	Design an 2 trainer aircraft with following requirements: Maximum level speed at mid cruise $400 \mathrm{Km} / \mathrm{hr}$ Range: 1500km Ceiling: 6000 meter Rate of climb at sea level $250 \mathrm{~m} / \mathrm{min}$ Stalling speed: $100 \mathrm{Km} / \mathrm{hr}$ Landing distance 700 m Takeoff distance 800 m Airplane should be powered by one conventional reciprocating engine Given Mission profile as: (provide three view sketches with Dimension of aircraft including Wing, Tail, fuselage, landing gears, Tires, etc.) OR For an aircraft of 180+capacity, the conventional seating (mixed class) would be five abreast for economy and four abreast for business, with a single aisle. For our executive layout, four abreast would be sensible. Design this aircraft with following performance requirements. Maximum level speed at mid cruise $450 \mathrm{Km} / \mathrm{hr}$ Range: 8000km Ceiling: 10000 meter Rate of climb at sea level $100 \mathrm{~m} / \mathrm{min}$ Stalling speed: $100 \mathrm{Km} / \mathrm{hr}$ Landing distance 1800 m Takeoff distance 1800 m Airplane should be powered by one conventional reciprocating engine Given Mission profile as: (provide three view sketches with Dimension of aircraft including Wing, Tail, fuselage, landing gears, Tires, etc.)	40	CO4

