am	e	:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Transportation and Marketing of Petroleum and Petroleum Products

Program: B.Tech:APE(UP)
Course Code: PEAU 4011P

Time: 03 hrs. Max. Marks: 100

Semester: VIII

Instructions: Assume suitable and necessary data if required and Justify

is required? Also, calculate the outlet temperature of the gas.

SECTION A (5Qx4M=20Marks)

Q 1	What is the future outlook of pipelines in india?	4	CO1
Q 2	How Single point mooring work?	4	CO1
Q 3	Define the term "Adiabatic efficiency" and hydraulic balance in compressors.	4	CO3
Q 4	List out energy conservation opportunities in pumping systems?	4	CO3
Q 5	Distinguish between COCOs and retail fuel stations.		CO4
	CTT CCTT CALL D		

SECTION B (4Qx10M= 40 Marks)

Q 6	A liquid has a temperature versus viscosity relationship as below:			10	CO1		
	Ten	np °F	65	185			
	Vise	cosity (cSt)	755	30			
Q 7	 a. Calculate the constants this liquid using ASTN b. What is the estimated same as in the first cas Discuss in detail how pressure 	A equations. viscosity of this e.	s liquid at	35°F? Assuming	mperature correlation for C and D values remains	10	CO2
Q 8	A gas pipeline is used for tracknowledge for horse power of adiabatic compression of 106. The discharge pressure is 130 conditions to be $Z_1 = 1.0$ and adiabatic efficiency = 0.8. If the	calculations, c	lculate the vith inlet te the comprectively, a	compressor hormperature of 68° essibility factors and the adiabatic	sepower required for an F and 725 psia pressures. at suction and discharge exponent = 1.4, with the	10	CO3

Q 9	Examine key challenges in natural gas distribution.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		•
Q 10	Crude oil is to be transported from an oil field to a refinery, located 750 kilometers away from the source through a steel pipeline 40 cm diameter. The difference in level between the two is negligible. Determine theoretically power required to overcome friction in line. Since maximum allowable pressure in any section of the line is 435 psi it will be necessary to insert additional pumping stations at suitable intervals along the line. Each station increases the pressure which drop to 247 psi at the inlet to the next pumping station. How many pumping stations are required? Data: Viscosity of Crude Oil is 0.47 P, Specific Gravity of Crude oil is 0.87, Flow rate is 300 m ³ /hr, Friction Factor = 0.0014 + (0.125/Re ^{0.32})		CO3
Q 11	a. Explain in detail the Government policy on petroleum product pricing.b. Discuss various marketing strategies used by companies to sell the petroleum products	10+10	CO4