Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Program: B.Tech (FSE) Subject (Course): Environmental Engineering & Management Course Code: HSFS 3010 Semester –VI Max. Marks : 100 Duration : 3 Hrs

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	Explain the factors affecting the selection of the particulate air control devices.	4	CO1
Q 2	Write a short note on handling and storing of coagulants.	4	CO3
Q 3	What are the key elements in EIA as per Government of India notification?	4	CO1
Q 4	Enlist various factors affecting composting process.	4	CO2
Q 5	Connect climate change with biodiversity loss with example.	4	CO2
	SECTION B		1
	(4Qx10M= 40 Marks)		
Q 6	What is inversion? Briefly explain the various types of inversion with the help of neat sketch.	10	CO3
Q 7	Mention the common impurities in water, which should be taken into account in deciding the portability of the water sample. Describe the essential tests to be performed on such a sample.	10	CO4
Q 8	Discuss the role of an environmental engineering in context with EIA.	10	CO4
Q 9	Differentiate Between Hauled Container System & Stationary Container System	10	CO2
	SECTION-C		
	(2Qx20M=40 Marks)		1
Q 10	A. The Dilution Factor P for an unseeded mixture of waste and water is 0.030. The DO of the mixture is initially 9 mg/L, and after five days, it has dropped to 4.0mg/L. The reaction rate constant K has been found to be 0.20 days ⁻¹ .	20	CO5
	i. What is the five-day BOD of the waste?ii. What would be the ultimate carbonaceous BOD?		

	 iii. What would be the remaining Oxygen demand after five days? b. Find the BOD of a seeded water sample at 25°C and 30°C if it has 300 mg/L ultimate BOD at 20 °C. Consider dilution factor K=0.33. c. A test bottle containing just seeded dilution water exhibit its DO level drop by 1 mg/L in a 5-day test. A 300 ml BOD bottle filled with 15 ml of wastewater and the rest seeded dilution water experiences a drop of 7.2mg/l in the same time. What would be the 5-day BOD of the wastewater? 		
Q 11	A large power plant has a 200 m stack with inside diameter of 1.5m. The exit velocity of the stack gas is estimated at 8m/s at the temperature of 130°C. Ambient temperature is 23°C and the wind at stack height is estimated to be 3m/s. Estimate the total effective height of the stack. If a) The atmosphere is stable with temperature increasing at the rate of 3°C/km. b) The temperature is slightly unstable. OR Enumerate the following with designing aspect and application: a) Cyclone Separator b) Dry & Wet Scrubber c) Atmospheric Stability d) Gravity Settler	20	CO5