

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Semester: VI

Time 03 hrs

End Semester Examination, May 2023

Course: Control System Engineering
Program: B. Tech electronics and communication engineering

Course Code: ECEG 3048 Max. Marks: 100

SECTION A $(5Q \times 4M = 20M)$

S. No.		Marks	CO
Q 1	Why is negative feedback is important in control system. Write the characteristics of negative feedback	4	CO2
Q 2	What do you understand by frequency response analysis? What is minimum phase system.	4	CO3
Q 3	Differentiate between transient and steady state stability?	4	CO1
Q 4	Elucidate the advantages of Routh Hurwitz stability criterion?	4	CO1
Q 5	Define the two situations in which compensation is required?	4	CO4
	SECTION B [4Q X 10M=40 M]		
Q 6	Elucidate the mathematical equation of PID controller. What is the advantage of PI controller over PD controller?	10	CO2
Q 7	The characteristics equation of a system in differential form is $\ddot{x} - (K+2)\dot{x} + (2K+10)x = 0$ Find the values of K for which the system is (i) stable (ii) limited stable and (iii) unstable. For stable case, for what values of K is the system (i) underdamped (ii) overdamped	10	CO2
Q8	Obtain the mathematical modelling of the following system.	10	CO3

(b)	Determine the following (i) The state Transition Matrix (ii) $X_1(1)$ under zero initial conditions and a step input (iii) Controllability and observability of the system The Linear Time Invariant system is characterized by homogenous state equation $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} $ The initial state is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ Find the resolvent matrix and state transition matrix of the given equation	10	CO4
Q 11	Design the complete root locus for $G(s)H(s) = \frac{K}{s(s+2)(s+4)}(K>0)$ From the root locus plot find the range of value of K for which the system will have damped oscillatory response. OR Using the Nyquist criterion ,find the range of K for stability for the system shown in figure? $\frac{R(s) + K}{(s+2)} = \frac{K}{(s+2)}$	20	CO3