Name:

**Enrolment No:** 



Semester : VI

: 03 hrs.

## **UPES**

## **End Semester Examination, May 2023**

**Course: Electromagnetic Waves and Antenna** 

Program: B.Tech (ASE+AVE) Time **Course Code: ECEG 3014** Max. Marks: 100

**Instructions: Attempt all questions.** 

|        | SECTION A<br>(5Qx4M=20Marks)                                                                                                                                                                    |       |      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| S. No. | (EQAINI-ZONZMINS)                                                                                                                                                                               | Marks | СО   |
| Q 1    | Describe V antenna and explain its principle of operation.                                                                                                                                      | 4     | CO 5 |
| Q 2    | Briefly describe the various layers of the earth's atmosphere.                                                                                                                                  | 4     | CO 3 |
| Q 3    | The radiation intensity of an antenna is given by: $U(\theta,\phi) = 2\cos\theta  W/sr  for  0 < \theta < \frac{\pi}{2}, \qquad 0 < \phi < 2\pi$ and zero elsewhere. Find total radiated power. | 4     | CO 1 |
| Q 4    | In free space $\vec{E}(z,t) = 50\cos(\omega t - \beta z)\hat{a}_x V/m$ . Find the average power crossing a circular aera of radius 2.5 m in the plane z = constant.                             | 4     | CO 2 |
| Q 5    | For the array of two infinitesimal horizontal dipole, find the nulls of the total field when $d = \lambda/4$ and $\beta = 0$ .                                                                  | 4     | CO 4 |
| 0.6    | SECTION B (4Qx10M= 40 Marks)  Derive the expression of the error factor of an N element uniform linear                                                                                          |       |      |
| Q 6    | Derive the expression of the array factor of an N-element uniform linear                                                                                                                        | 10    | CO 4 |
| Q 7    | Define and derive the expression of critical frequency and maximum usable frequency regarding ionospheric wave propagation.                                                                     | 10    | CO 3 |
| Q 8    | Explain how Ampere's law is inconsistent for the time-varying fields and derive the expression for the modified Ampere law.                                                                     | 10    | CO 2 |
| Q9     | Explain the operation of the Yagi-Uda antenna with suitable diagram.  Or  Explain the design and operation of the helical antenna in both normal and axial mode.                                | 10    | CO 5 |
|        | SECTION-C<br>(2Qx20M=40 Marks)                                                                                                                                                                  |       |      |
| Q 10   | Attempt any two questions.  (a) Derive wave equation starting from Maxwell's equation for free space.                                                                                           | 10+10 | CO 3 |

|      | (b) What is a uniform plane wave? Describe its properties, both |        |      |
|------|-----------------------------------------------------------------|--------|------|
|      | physically and mathematically.                                  |        |      |
|      | (c) State and proof Poynting Theorem.                           |        |      |
| Q 11 | Write a short note on the following:                            |        |      |
|      | (a) Radiation pattern of an antenna                             |        |      |
|      | (b) Radiation Power Density                                     | 10+5+5 | CO 1 |
|      | (c) Antenna Efficiency                                          |        |      |
|      |                                                                 |        |      |