Name:

Enrolment No:

UPES End Semester Examination, May 2023

Course: Aircraft Structures-II Program: B. Tech ASE & ASE+AVE Course Code: ASEG 3021 Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: Assume any suitable value for the missing data

	SECTION A (5Qx4M=20Marks)				
S. No.	(3(2X41)1-201)141 KS)	Marks	СО		
Q 1	 True/False with justification in not more than two sentence. a) Skin of idealized aircraft wing rib cross-section carry only shear stress and booms bending stress. b) Shear center coincide with centroid for doubly axis symmetry cross-section. 	4	C01		
Q2	 True/False with justification in not more than two sentence. a) Flange predominantly carry shear stress and web bending stress in I- Section b) Shear flow distribution in a idealised fuselage cross-section will always has symmetry about both axis. 	4	CO1		
Q3	 True/False with justification in not more than two sentence. a) In a plane of max. shear stress normal stress is zero. b) Twist is constant across the junction of thin walled section under pure torque 	4	CO1		
Q4	Determine the maximum bending stress carried by the idealized section subjected to positive bending moment of 100KNm about the centroid of section. Take $A_1 = A_2 = 100 \text{ mm}^2$ and $A_3 = 50 \text{ mm}^2$ A1 A3 A3 A2	4	CO2		

Q5	A thin circular beam cross-section of radius = 20 cm and thickness = 2 mm is subjected to torque T = 100kNm, the value of maximum shear stress is? T = 100 KN.m	4	CO3
	SECTION B (4Qx10M= 40 Marks)		
Q 6	A T- section shown in fig. below. Calculate the maximum Flexural (bending) stress value and position, if the beam is subjeted to moment, M_x and My of magnitude 100 KN mm and 50 KN mm respectively.	10	CO3
Q7	 A steel block with dimensions of 20 cm x 20 cm is subjected to a triaxial stress state. The normal stresses acting on the block are σ_x = 150 MPa, σ_y = 200 MPa, and σ_z = 250 MPa. The shear stresses acting on the block are τ_{xy} = 100 MPa, τ_{yz} = 50 MPa, and τ_z = 75 MPa. The elastic modulus of the steel is 200 GPa and Poisson's ratio is 0.3. Find the below. A) The strain in the x-direction B) The strain in the y-direction C) The strain in the z-direction D) The shear strain in the xy-plane E) The shear strain in the yz-plane 	10	CO2

