| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| UPES |  |  |  |
|  | End Semester Examination, May 2023 |  |  |
| Programme Name: B. Tech (APE UP) |  | Semes |  |
| Course Name : Artificial Lift Technology |  | Time | : 03 hrs |
| Course Code : PEAU 3034 |  | Max. | s: 100 |
| Nos. of page(s) : 02 |  |  |  |
| Instructions: All questions are compulsory. Assume data if necessary. |  |  |  |
| $\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$ |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | List out the selection criteria to use the gas lift technology in oil? | 4 | CO2 |
| Q 2 | Differentiate between continuous gas lift and intermittent gas lift. | 4 | CO2 |
| Q 3 | Write the working procedure of intermittent gas lift with the help of diagram. | 4 | CO2 |
| Q 4 | List the major advantages of progressive cavity pump in oil well. | 4 | CO4 |
| Q 5 | Discuss the working principle of jet pumping unit. | 4 | CO4 |
| $\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$ |  |  |  |
| Q 6 | Elaborate the hydraulic pumping system with the help of diagram. Identify the application and limitations of hydraulic pumping. | 10 | CO 3 |
| Q 7 | Describe the working procedure of progressive cavity pump with the help of neat and clean diagram. What are their disadvantage and uses of PCP? | 10 | CO4 |
| Q 8 | Illustrate the working procedure of continuous gas lift with the help of diagram. Also write the advantages and disadvantages of continuous gas lift. | 10 | CO2 |
| Q 9 | Explain the working principle and procedure of electrical submersible pump with the help of suitable diagram. Also focus on the limitation of ESP. <br> OR <br> Explain the working principle and procedure of electrical submersible progressive cavity pump with the help of suitable diagram. Also write the uses and limitation of ESPCP. | 10 | CO 3 |


| $\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Q 10 | A pumping installation consists of a $2^{1 / 4}$ - in. pump set at 7080 ft in $2^{7 / 8}$ in. tuning ( 2.441 - in. I.D., and $2.875-$ in. O.D.) and $\mathrm{A}_{\mathrm{p}}=3.976 \mathrm{Sq}$ in., $\mathrm{A}_{\mathrm{t}}=1.812 \mathrm{Sq}$ in., elastic constant $\left(\mathrm{E}_{\mathrm{t}}\right)=0.221 \times 10^{-6} \mathrm{in} . / \mathrm{lb} / \mathrm{ft}$., Rod No. 76, $\mathrm{E}_{\mathrm{r}}=0.774 \times 10^{-6} \mathrm{in} . / \mathrm{lb} / \mathrm{ft}$., surface stroke of 50 in . Oil having a specific gravity of 0.81 is at a level of 5800 ft in the casing annulus. The unit utilized a rod string consisting of $3 / 4$ - in. rods and operates at 16.8 spm. Pump efficiency is $75 \%$ and $55 \mathrm{~B} / \mathrm{P}$ are being produced. <br> Determine: (a) Effecting plunger stroke (b) Tubing stretch (c) Tapered rod stretch when $\mathrm{L}_{1}=3788 \mathrm{ft}$. and $\mathrm{L}_{2}=3292 \mathrm{ft}$. (d) Polished rod stretch <br> (e) Over-travel (f) Is this a satisfactory stroke ratio $\left(\mathrm{S}_{\mathrm{p}} / \mathrm{S}\right)$ ? <br> OR <br> Well and Pumping unit data: Pump depth $=4500 \mathrm{ft}$., Production $(100 \%$ Volumetric efficiency) $=150$ B/D, Rods No. 76 ( $7 / 8^{\prime \prime}$ and 3/4') , and Plunger diameter $=1.25$ in., Stroke length $=64$ in., Pumping speed $=13.2$ spm for conventional unit and 13.1 for Mark II. Determine prime mover (nameplate) horse power for the following four conditions: <br> (a) Conventional unit driven by NEMA "D" motor <br> (b) Conventional unit driven by NEMA "C" motor <br> (c) Mark II unit driven by NEMA "D" motor <br> (d) Conventional unit driven by NEMA "C" motor <br> Additional data are given: <br> For conventional Unit: Peak torque $=141000$ in-lb (in-balance), Unit required $=160000$ in-lb (API), Nominal horse power rating $=33$, Polished rod horse power $=7$ (surface efficiency $67.5 \%$ ). <br> For Mark II: Peak torque $=94000$ in-lb (in-balance), Unit required $=$ 114000 in-lb (API), Nominal horse power rating $=25$, Polished rod horse power $=6.9$ (surface efficiency $78 \%$ ). | 20 | CO1 |
| Q 11 | Estimate peak and minimum polished rod loads, counterbalance required and peak torque for both Mark II and conventional units for the following conditions: Pumping depth $=5900 \mathrm{ft}$, Desired fluid production $=150$ $B / D$, Volumetric efficiency $=80 \%$, Stroke length $=64$ in., Pumping speed $=16.5 \mathrm{spm}$, Pump diameter $1^{1 / 4}$ in., Rod number $=$ API No. 76, Fluid specific gravity $=1.0$. Additional data are given: Rod weight $=$ $1.814 \mathrm{lb} / \mathrm{ft} ., \mathrm{A}_{\mathrm{p}}=1.227 \mathrm{sq}$ in., $\mathrm{TF}_{\max }=34, \mathrm{TF}_{1}=29$ and $\mathrm{TF}_{2}=37$. | 20 | CO1 |

