Name:	
Enrolment No	:
	UNIVERSITY

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2023

Programme Name: B.Tech., APE GAS

Semester : VI

Course Name: Formation Evaluation and Well Testing

Time : 03 hrs

Course Code : PEAU 3036 Max. Marks : 100

Nos. of page(s): 2

Q10

Instructions: 1. Assume any data missing.

2. Maintain a minimum of three decimal accuracy.

SNo	SECTION A (5*4=20M)						Marks	CO	
Q 1	List various laboratory methods for measuring porosity of a core.						4	CO1	
Q 2	Explain Formation	n Factor, F.						4	CO2
Q 3	Demonstrate on the transit time in acoustic log operation.						4	CO3	
Q 4	Q 4 Describe shale index.						4	CO4	
Q 5	Elaborate hydraulic diffusivity.						4	CO5	
	SECTION B (4*10=40M)								
Q 6	Describe with a neat diagram the borehole environment during logging operation						10	CO2	
Q 7	7 Compare and contrast between various electrical log tool operations.						10	CO3	
Q 8	Elaborate with a neat diagram the working of a dual receiver sonic log tool						10	CO4	
	A Flow-After-Flow test in a gas well reported the following data.								
		$P_{wf}(psig)$	403	394	379	363			
Q9		qg (MMscf/D	4.288	9.265	14.552	20.177		10	CO5
	At each rate, pseudo-steady state was reached. Initial shut-in bottom hole pressure was								
	determined to be 408 psi. Estimate the Absolute Flow Potential (AOF) of the tested well.								
SECTION C (2*20, 40M)									

SECTION-C (2*20=40M)

Derive for the diffusivity equation describing the three-dimensional flow of oil with a constant compressibility C_t and viscosity μ through an iso-tropic cartesian porous medium.

OR

A pressure build-up test on an oil well producing at a final production rate of 250 STB/D and above the bubble point for an effective time of 13,630 hours with liquid level in well during shut in has resulted in the following data.

∆t, hrs	P _{ws} , psia	∆t, hrs	P _{ws} , psia	∆t, hrs	P _{ws} , psia	∆t, hrs	P_{ws} , psia
0	3534	0.5	3920	7	4344	24	4384
0.15	3680	1	4103	8	4350	30	4393
0.2	3723	2	4250	12	4364	40	4398
0.3	3800	4	4320	16	4373	50	4402
0.4	3866	6	4340	20	4379	60	4405
						72	4407

Determine the formation permeability and the skin factor, from the following well and reservoir data $\mu = 0.8$ cp; $\Phi = 0.039$; B = 1.136 RB/STB; $C_t = 17 \times 10^{-6}$ psi⁻¹; $r_w = 0.198$ ft; $r_e = 1,489$ ft (well centered in a square drainage area, 2,640x2640 ft; r_e is the radius of

20 CO4

	circle with same area); $\rho = 53$ Ibm/ft ³ ; $A_{wb} = 0.0218$ sq ft; and $h = 69$ ft						
	Derive for the diffusivity equation describing the one-dimensional radial flow of						
	compressible gas through an iso-tropic porous medium.						
	OR						
	An Isochronal test in a gas well	reported the following	ng data				
	Test	Duration (Hours)	P_{wf} or P_{ws} (psig)	q _g (MMscf/D)			
	Initial shutdown	48	1952	-			
	1 st flow	12	1761	2.6			
	1 st shut-in	15	1952	-			
Q11	2 nd flow	12	1694	3.8		20	CO5
	2 nd shut-in	17	1952	-			
	3 rd flow	12	1510	5			
	3 rd shut-in	18	1952	-			
	4 th flow	12	1320	6.3			
	Extended flow (stabilized)	72	1151	6.0			
	Final Shut in	100	1952	-			
	Estimate the Absolute Flow	Potential (AOF) of	the tested well	by empirical	and		
	theoretical analysis						