Name:		WUPFS		
Enrolment No:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
End Semester Examination, May 2023				
Programme Name:B.Tech., APE GASSemester			: VI	
Course Name: Production Engineering-IITime			: 03 hrs	
Course Code : PEAU 3004 Max. Mar			ks : 100	
Nos. of page(s) : 1				
Instructions: 1. Assume any data missing.				
2. Maintain a minimum of three decimal accuracy.				
SNo	SECTION A (5*4=	=20M)	Marks	CO
Q 1	Define total formation volume factor.		4	CO1
Q 2	Define emulsion and mention its significance in oil-water separation.		4	CO2
Q 3	Classify various types of oil and gas storage tanks		4	CO4
Q 4	Classify various types of subsurface pumps of an SRP		4	CO5
Q 5	Write the principle of working of a gas lift technique			CO6
SECTION B (4*10=40M)				
Q 6	Elaborate with a neat sketch the working of a two-pl	hase horizontal separator.	10	CO2
Q 7	Compare and contrast between various metering devices used in oil and gas metering		10	CO3
Q 8	Classify various types of pump based artificial lift methods. Explain their principle of		10	CO5
	vorking.		005	
Q9	Illustrate with a neat diagram the components of a pressure operated gas lift valve.		10	CO6
SECTION-C (2*20=40M)				
Q10	i. Illustrate with a neat diagram the working comp		20	CO5
	ii. Illustrate with a neat diagram the working of an			
Q11	A valve with a bellow area of 1.0 sq.in. and a port	-		
	The pressure in the dome is 700 psi and the tubing pressure is 500 psi at 6000 ft. The			
	injection gas has a specific gravity of 0.7 at an average temperature at surface 100^{0} F.		20	CO6
	Assuming Z _{injection air} =0.8, Calculate			
	i. the casing pressure at 6000 ft required to open the valve.			
	ii. the casing pressure at 6000 ft required to close the valve.			
	iii. the tubing effect.			
	iv. the spread of the valve.			
	v. the test rack opening pressure.			