Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2023

Program Name: B.TECH-Automotive Design Engineering Semester : VI Course Name : Hybrid Vehicles Time : 03 hrs.

Course Code : MEAD3014 Max. Marks: 100

Nos. of page(s): 02

Instructions: Attempt All Questions. One question from section B and C have an internal Choice.

Assume any missing data if required.

SECTION A (50x4M=20Marks)

S. No.	Statement of question	Marks	СО
Q1	What is DC Choppers? Explain its applicability with advantages and disadvantages.	4	CO1
Q2	Discuss major associated disadvantages with fuel cells.	4	CO1
Q3	Discuss 1. Hybrid ECU 2. Transmission ECU with suitable applications.	4	CO1
Q4	A Hybrid and Electric vehicle uses a 25 KW motor and 120 KW gasoline engine. Is it mild, mild hybrid or full hybrid? State the advantages and disadvantages of it by considering its hybridness.	4	CO2
Q5	Discuss Fuel Cells thermodynamics.	4	CO2
06	(4Qx10M= 40 Marks)		
Q6	Elaborate Electric motor capabilities curve in	10	GO.
	Continuous Rating Peak Overload condition.	10	CO2
Q7	Perform steady-state analysis of the first quadrant (Acceleration) in Continuous conduction mode (CCM) in DC drive trains.	10	CO2
Q8	Discuss fuel cell efficiency and associated efficiency limits with mathematical models.	10	CO2
Q9	Discuss the speed vs time and acceleration vs time curve of the Japanese (JP-015) drive cycle.		
	OR Discuss the speed vs time and acceleration vs time curve of the Extra Urban drive cycle (EUDC).	10	СОЗ
	, areamony a		

SECTION-C (2Qx20M=40 Marks)

Q10	Discuss how Regenerative braking can be used as an Electronically Controlled Regenerative braking system. Explain it with a suitable diagram.	20	CO3
Q11	Deduce the mathematical formulation of the vehicle kinetics and roadway by considering all parameters (forces, grade-ability etc.). OR Deduce a mathematical expression for the total mass of a parallel hybrid and electric vehicle (HEV) by considering all-electric acceleration capabilities.	20	CO3