Name: Enrolment No:			
Prog Cour Cour Nos.	$\left.\begin{array}{lrl} & \text { UNIVERSITY OF PETROLEUM AND ENERGY STUDIES } \\ & \text { End Semester Examination, May } 2023\end{array}\right)$	$\begin{aligned} & \text { VI } \\ & \mathbf{3 ~ h} \\ & s: 100 \end{aligned}$	
Instructions: In case of data missing make necessary assumptions			
S.No	Section A (Attempt all questions)	Marks	CO
Q 1	What is the determinant for the given system of equations $-3 x_{2}+7 x_{3}=2, x_{1}+2 x_{2}-$ $x_{3}=3,5 x_{1}-2 x_{2}=2$, and use Cramer's rule to find values of x's	12 M	CO1
Q 2	Infer the roots of the function, $f(x)=4 x^{3}-6 x^{2}+7 x-2.3$ using Newton-Raphson method to locate the roots. Employ an initial guess of $x_{0}=0$, and make 3 iterations and calculate the approximate error, ε_{a} for each iteration.	12 M	CO 2
Q 3	Apply Simpson's $3 / 8$ rule to solve the value of $\int_{0.2}^{1.4}\left(\sin x-\log x+e^{x}\right) d x$	12 M	CO 3
Q 4	Given that $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$. Taking $h=1.0$. infer $y(1.0)$ using Taylor series method by considering upto third degree term.	12 M	CO2
Q 5	Apply Liebmann's method to determine the temperature distribution of the square heated plate (Fig. 1). Use a relaxation factor of 1.2. The dimensions of the plate is $6 \mathrm{~cm} \times 6 \mathrm{~cm}$. Use at-least two interior nodes in both horizontal and vertical directions. Note that the material is aluminum with specific heat, $C=0.2174 \mathrm{cal} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$ and density, $\rho=2.7 \mathrm{~g} / \mathrm{cm}^{3}$. The thermal conductivity, $k^{\prime}=0.49 \mathrm{cal} /\left(\mathrm{s} \cdot \mathrm{cm} \cdot{ }^{\circ} \mathrm{C}\right)$, $\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0$	12 M	CO5

