Name: Enrolment No:			
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$			
S. No.		Marks	CO
Q1	Suppose S denotes the set of polynomials in x that have no linear term i.e. $S=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots \ldots+a_{2} x^{2}+a_{0} \mid n \in \mathbb{Z}_{\geq 0}, a_{i} \in \mathbb{Z}\right\}$ Is x^{2} an irreducible element in S ? Is x^{2} prime? Justify.	4	CO1
Q2	A polynomial of degree n has at most n zeros in \mathbb{Z}_{n}. Prove or disapprove by suitable counterexample.	4	CO1
Q3	Is $\mathbb{Z}[\sqrt{-5}]$ a principal ideal domain? Justify.	4	CO1
Q4	Consider the set $S=\operatorname{span}\{(a, b, c)\} \subset \mathbb{R}^{3}$, where a, b, c are in arithmetic progression. Find the orthogonal complement S^{\perp} in \mathbb{R}^{3} w.r.t. Euclidean inner product.	4	CO 2
Q5	Does there exist a linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T^{2}+I=O$ (where I is identity and O is null matrix in \mathbb{R}^{3})? Justify your answer.	4	CO 2
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	Consider the polynomial $p(x)=2 x^{5}-4 x^{3}-3$ in the ring $\mathbb{R}[x]$. Is $p(x)$ irreducible over \mathbb{Q} ? Defend your answer with sound mathematical reasoning.	10	CO1
Q7	Show that the element $1+\sqrt{5}$ is irreducible in $\mathbb{Z}[\sqrt{5}]$.	10	CO1
Q8	Suppose W is invariant under $T: V \rightarrow V$. Show that W is invariant under $f(T)$ for any polynomial $f(t)$.	10	$\mathrm{CO2}$

Q9	Consider a vector space V over \mathbb{R} and $u, v \in V$. Derive Cauchy-Schwarz inequality $(\langle u, v\rangle)^{2} \leq\left.\left\|\|u\| \\|^{2}\right\|\|v\|\right\|^{2}$. OR State Cayley-Hamilton theorem and give its topological proof.	10	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10	Let V be a vector space of polynomials over \mathbb{R} of degree ≤ 2. Let ϕ_{1}, ϕ_{2} and ϕ_{3} be the linear functionals on V defined as $\phi_{1}(f(t))=\int_{0}^{1} f(t) d t, \quad \phi_{2}(f(t))=f^{\prime}(1), \quad \phi_{3}(f(t))=f(0)$ Here $f(t)=a+b t+c t^{2} \in V$ and $f^{\prime}(t)$ denotes the derivative of $f(t)$. Find the basis $\left\{f_{1}(t), f_{2}(t), f_{3}(t)\right\}$ of V that is dual to $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$.	20	CO2
Q11	Consider the set $S=\{(3,1),(2,2)\}$ in the inner product space \mathbb{R}^{2} equipped with the conventional Euclidean inner product. Normalize the vectors of S using Gram-Schmidt process. OR Obtain an orthonormal basis from the given basis $\left\{\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}$ in the vector space of all 2×2 real matrices i.e. $M_{2}(\mathbb{R})$ equipped with the inner product defined as $\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)$, where B^{T} is the transposed matrix B.	20	CO 3

