Name: Enrolment No:			
Cours Progra Cours Instru 1) 2) 3)	End Semester Examination, May 2023 Linear Programming and Theory of Games Code: MATH 3016 B.Sc. (H) Mathematics ions: Read all the below mentioned instructions carefully and follow them Mention Roll No. at the top of the question paper. Attempt all the parts of a question at one place only. Attempt all the questions from each section.	ter: VI $\text { : } 03$ Marks: y :	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Define an extreme point of a LPP. Check whether the following statement true or false: (a) Each extreme point is a boundary point but converse need not be true. (b) Extreme point of any convex set may or may not be finite in number.	4	CO1
Q 2	Define degenerate and non-degenerate solution of a LPP.	4	CO1
Q 3	Solve the LPP by using Graphical method $\begin{array}{lr} \text { Maximize } & \mathrm{Z}=8 x_{1}+6 x_{2} \\ \text { subject to } & 5 x_{1}+4 x_{2} \end{array} \leq 80, ~ \begin{aligned} x_{1} & \leq 12 \\ x_{2} & \leq 15 \\ & x_{1}, x_{2} \end{aligned} \geq 0$	4	CO1
Q 4	Write the dual of the primal problem $\begin{array}{cc} \text { Maximize } & \mathrm{Z}=2 x_{1}-x_{2}+x_{3} \\ \text { subject to } & 3 x_{1}+x_{2}+x_{3} \leq 60 \\ & x_{1}-x_{2}+2 x_{3} \geq 10 \\ & x_{1}+x_{2}-x_{3} \leq 20 \end{array}$ $x_{1}, x_{2} \geq 0$ and x_{3} is unrestricted in sign.	4	CO 2

Q 9	Two companies A and B are competing in advertising a new product. The marketing research department of company A estimates the pay-off matrix. The entries in the following table indicate increased sales in thousands of Rs. for company A. Determine the optimal strategies for company A and B and the value of advertising the product. OR Solve the following game by simplex method.	10	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks) } \end{gathered}$			
Q 10	Solve the linear programming problem $\begin{array}{lc} \text { Maximize } & \mathrm{Z}=3 x_{1}+x_{2}+4 x_{3} \\ \text { subject to } & 6 x_{1}+3 x_{2}+5 x_{3} \leq 25 \\ & 3 x_{1}+4 x_{2}+5 x_{3} \leq 20 \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{array}$ and test this solution for feasibility and optimality when the (a) objective function is changed to Maximize $\mathrm{Z}=3 x_{1}+3 x_{2}+4 x_{3}$. (b) right hand side is changed to $\left[b_{1}, b_{2}\right]^{T}=[20,30]^{T}$. (c) coefficient of x_{1} is changed to $\left[a_{11}, a_{21}\right]^{T}=[2,3]^{T}$.	20	$\mathrm{CO2}$

