Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Metric Spaces & Complex Analysis Program: B.Sc. (H) Mathematics Course Code: MATH 3005

Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions. Each question in Section A carries 4 marks. Each question in Section B carries 10 marks. Each question in Section C carries 20 marks. Internal choices are available for questions 9 and 11.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Give an example of a pseudo-metric space which is not a metric space.	4	CO1
Q 2	Evaluate $\oint_C \frac{1}{z} dz$, where <i>C</i> is the circle defined by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.	4	CO4
Q 3	Find the circle and radius of convergence of the given power series: $\sum_{k=0}^{\infty} \frac{1}{(1-2i)^{k+1}} (z-2i)^k$	4	CO3
Q 4	Discuss the nature of singularity of $f(z) = \frac{z - \sin z}{z^3}$ at $z = 0$.	4	CO3
Q 5	Find the residue at $z = 0$ of the following function: $f(z) = \frac{1+e^{z}}{\sin z + z \cos z}$	4	CO3
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Using Cauchy's integral formula, evaluate $\oint_C \frac{z+1}{z^4+2iz^3} dz$, where <i>C</i> is the circle $ z = 1$.	10	CO4
Q 7	Describe the open sphere of unit radius about $(0, 0)$ of the following metric for \mathbf{R}^2 : $d(z_1, z_2) = x_1 - x_2 + y_1 - y_2 ,$ where $z_1 = (x_1, y_1), z_2 = (x_2, y_2)$ are any two points of \mathbf{R}^2 .	10	C01
Q 8	Using the method of contour integral, evaluate the given real trigonometric integral $\int_0^{2\pi} \frac{\cos 2\theta}{5+4\cos\theta} d\theta$.	10	CO4

Q 9	Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for $1 < z-2 < 2$.				
	OR	10	CO3		
	Find the maximum modulus of $f(z) = 2z + 5i$ on a closed circular				
	region defined by $ z \leq 2$.				
	SECTION-C (2Qx20M=40 Marks)				
Q 10	 (a) Prove that the function f: [0, b] → R defined by f(x) = x² is uniformly continuous, where b > 0. (b) Let C be the set of all real valued bounded continuous function defined on [0, 1]. If d is defined by d(f, g) = sup{ f(x) - g(x) : x ∈ [0, 1]}, then show that d is a metric on C, where f, g ∈ C. 	10+10	CO2		
Q 11	State and prove Taylor's theorem for the complex function $f(z)$. OR State and prove Cauchy's residue theorem. Using the theorem, evaluate $\oint_C \tan z \ dz$, where <i>C</i> is the circle $ z = 2$.	20	CO5		