| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| Cours <br> Progra <br> Cours <br> Instru <br> Section questio | UNIVERSITY OF PETROLEUM AND ENERGY STUD <br> End Semester Examination, May 2023 <br> Metric Spaces \& Complex Analysis <br> : B.Sc. (H) Mathematics <br> Code: MATH 3005 <br> ions: Attempt all the questions. Each question in Section A carries 4 mark B carries 10 marks. Each question in Section C carries 20 marks. Internal 9 and 11. | mester: me : 03 ax. Mark <br> Each que ices are | for |
| $\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$ |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | Give an example of a pseudo-metric space which is not a metric space. | 4 | CO1 |
| Q 2 | Evaluate $\oint_{C} \frac{1}{z} d z$, where $C$ is the circle defined by $x=\cos t, y=\sin t$, $0 \leq t \leq 2 \pi$. | 4 | CO4 |
| Q 3 | Find the circle and radius of convergence of the given power series: $\sum_{k=0}^{\infty} \frac{1}{(1-2 i)^{k+1}}(z-2 i)^{k}$ | 4 | CO3 |
| Q 4 | Discuss the nature of singularity of $f(z)=\frac{z-\sin z}{z^{3}}$ at $z=0$. | 4 | CO3 |
| Q 5 | Find the residue at $z=0$ of the following function: $f(z)=\frac{1+e^{z}}{\sin z+z \cos z}$ | 4 | $\mathrm{CO3}$ |
| $\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Q} \times 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$ |  |  |  |
| Q 6 | Using Cauchy's integral formula, evaluate $\oint_{C} \frac{z+1}{z^{4}+2 i z^{3}} d z$, where $C$ is the circle $\|z\|=1$. | 10 | CO4 |
| Q 7 | Describe the open sphere of unit radius about $(0,0)$ of the following metric for $\mathbf{R}^{2}$ : $d\left(z_{1}, z_{2}\right)=\left\|x_{1}-x_{2}\right\|+\left\|y_{1}-y_{2}\right\|$ <br> where $z_{1}=\left(x_{1}, y_{1}\right), z_{2}=\left(x_{2}, y_{2}\right)$ are any two points of $\mathbf{R}^{2}$. | 10 | CO1 |
| Q 8 | Using the method of contour integral, evaluate the given real trigonometric integral $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$. | 10 | CO4 |


| Q 9 | Expand $f(z)=\frac{1}{z(z-1)}$ in a Laurent series valid for $1<\|z-2\|<2$. <br> OR <br> Find the maximum modulus of $f(z)=2 z+5 i$ on a closed circular region defined by $\|z\| \leq 2$. | 10 | $\mathrm{CO3}$ |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$ |  |  |  |
| Q 10 | (a) Prove that the function $f:[0, b] \rightarrow \boldsymbol{R}$ defined by $f(x)=x^{2}$ is uniformly continuous, where $b>0$. <br> (b) Let $C$ be the set of all real valued bounded continuous function defined on $[0,1]$. If $d$ is defined by $d(f, g)=\sup \{\|f(x)-g(x)\|: x \in[0,1]\}$ <br> then show that $d$ is a metric on $C$, where $f, g \in C$. | 10+10 | CO2 |
| Q 11 | State and prove Taylor's theorem for the complex function $f(z)$. <br> OR <br> State and prove Cauchy's residue theorem. Using the theorem, evaluate $\oint_{C} \tan z d z$, where $C$ is the circle $\|z\|=2$. | 20 | $\mathrm{CO5}$ |

