Name: **Enrolment No:** **Semester: VI** ## **UPES** ## **End Semester Examination, May 2023** **Course: Analytical Methods in Chemistry** Program: BSc (H) Chemistry Course Code: CHEM 3008 Time: 03 hrs. Max. Marks: 100 **Instructions:** 1. Read all the instructions carefully and follow them strictly. 2. Mention Roll No. at the top of the question paper. 3. ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY. 4. Use of scientific calculator is allowed. ## **SECTION A** | S. No. | | Marks | CO | |--------|---|-------|-----| | Q 1 | Justify the cause of chemical interference in Flame Atomic Absorption Spectroscopy (FAAS). How can it be removed? | 4 | CO1 | | Q 2 | The temperatures of two bodies measured by a thermometer are t_1 = (15 + 0.3)°C, t_2 = (45 ± 0.2)°C. Calculate the temperature difference and the error therein. | 4 | CO2 | | Q 3 | a) Define 'Synergistic extraction' as a separation technique. b) Calculate the weight of Fe (III) left unextracted from 200 mL of a solution having 500 mg of Fe(III) ion in 5 M HCl after three extractions with 25 mL of diethyl ether (D = 100) | 2 + 2 | CO3 | | Q 4 | Describe basic principle of conductometric titrations. | 4 | CO1 | | Q 5 | Classify Determinate errors. | 4 | CO2 | | | SECTION B | | | | Q 6 | Explain how will you determine metal ions in solution quantitively by UV-Vis analysis giving an example of chromium and manganese ions | | | | | OR | 10 | CO1 | | | Discuss the operation of Graphitic Furnace in AAS with labelled diagram. | | | | Q 7 | Explain propagation of errors in measurement. | 10 | CO2 | |------|---|---------|----------| | Q 8 | a) Elaborate the cation exchange chromatography process giving a suitable example. b) Arrange the following cations in increasing order (strongly held to weakly held) of their separation by cation exchange chromatography: Li⁺, K⁺, Rb⁺ Give reason. | 5 + 5 | CO3 | | Q 9 | Discuss the mechanism of extraction of metal ions by chelation & deduce the following equation: $K = \left(D_{MRn} \; K_f K_{a}{}^{n}\right) / \left(D_{HR}\right)^{n}$ | 10 | CO3 | | | SECTION-C | | <u> </u> | | Q 10 | a) Give an example of thermogravimetric analysis (TGA) of any chemical reaction and explain the TG curve.b) Draw a conductometric titration curve of HCl and NaOH and explain. | 10 + 10 | CO1 | | Q 11 | a) Discuss the separation of benzoic acid from an aqueous solution by solvent extraction method. b) Deduce the relationship between distribution ratio and partition coefficient. Discuss the effect of pH on the distribution ratio. OR a) Define 'separation factor' and comment on its significance in the separation of solutes from solution. b) Discuss the methods of location of compounds on the chromatogram in thin layer chromatography (TLC) | 10 + 10 | CO3 |