Name: **Enrolment No:** ## **UPES** ## **End Semester Examination, May 2023** Course: Organic Chemistry V Semester: VI Program: B.Sc (H) Chemistry Time : 03 hrs. Course Code: CHEM 3004 Max. Marks: 100 Instructions: Read all the below mentioned instructions carefully and follow them strictly. - 1) Mention Roll No. at the top of the question paper. - 2) Internal choice is given in Q. no. 10. - 3) ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY. ## SECTION A (5Qx4M=20Marks) | C N | (ognini-zoniums) | | | | |--------|--|-------|-----|--| | S. No. | | Marks | CO | | | Q 1 | What are prerequisite for a colored compound to act as a dye? | 4 CO3 | | | | Q2 | How will you distinguish between Glucose and Fructose? | 4 | CO3 | | | Q3 | Discuss the classification of polymers based on thermal treatment. | 4 CO1 | | | | Q4 | Two isomeric compounds A and B having Molecular formula C ₃ H ₆ O shows IR band A at 3300 cm-1 and 1640 cm-1 and B at 1710 cm-1. Predict structure of A and B. | 4 | CO2 | | | Q5 | A polymer is soluble in water, explain, the detail of polymerization technique that you would suggest. | 4 | CO1 | | | | SECTION B | | • | | | | (4Qx10M=40 Marks) | | | | | Q6 | Compare polyaddition polymerization with chain growth and step growth polymerization. | 10 | CO1 | | | Q7 | Explain, the effect of substitution on $\pi \rightarrow \pi^*$ transition in terms of Bathochromic shift and Hypsochromic shift. | 10 | CO2 | | | Q8 | Give the reactions supporting the linkage of C1 and C5 in ring structure of Glucose. | 10 | CO3 | | | Q9 | Give preparation, properties and application of phenolphthalein and Indigotin | 10 | CO3 | | | | SECTION-C | | • | | | | (2Qx20M=40 Marks) | | | | | Q10 a | Give preparation, properties and application of LDPE and HDPE | 10 | CO1 | | | | OR | | | | | | | 1 | | |-------|---|-------|-----| | | Taking example, explain the free radical mechanism of polymerization. | | | | b | Depict important characterstic of polycondensation polymerization | | | | | OR | 10 | | | | Give reasons: Electric fitting is made up of PVC. Suspension polymerization is known as bead polymerization. Elemental composition of Polymers are different from monomers in case of condensation polymerization. Free radical polymerization is done in the presence of inert atmosphere. Addition polymerization is also known as chain growth polymerization Initiation can be done by heat, light or catalyst Inhibitor are added to monomers during storage and transportation Isotactic PP is used for making hospital accessories Molecular weight of polymers is expressed as average. Thermosets cannot be remolded | | | | Q11 a | Calculate \(\lambda \text{max for the given compounds} \) | 1+2+2 | | | В | Calculate the expected number of signal in H NMR spectra of the following i) Allyl alcohol ii) 2- Bromo propene | 5 | CO2 | | С | iii) 2 chloro propane iv) Ethyl alcohol v) Para ethyl xylene Explain, in detail Anisotropic effects in benzene and alkene. | 10 | | ## **Base values:** Butadiene System=217 mµ Heteroannular conjugated diene = 215 mµ Homoannular conjugated diene=253 mµ α,β unsaturated ketone =215 m μ Homoannular conjugated diene in α,β unsaturated ketone= 39 mμ Extended conjugation= 30 mµ Alkyl substituent/RR/exocyclic double bond = $5 \text{ m}\mu$ | Substituents | α | β | γ | δ | |----------------------------|----|----|----|----| | Alkyl substituent
or RR | 10 | 12 | 18 | 18 | | ОН | 35 | 30 | 50 | 50 |