Name: Enrolment No:			
Cours Progra Cours Instru	\quad UPES End Semester Examination, May 2023 Hydraulics and Pneumatics Code: Mech Mechatronics CH3029 ions: Attempt all questions	Semester: VI Time : 03 hrs . Max. Marks: 100	
$\begin{gathered} \text { SECTION A } \\ (5 \mathrm{Qx} 4 \mathrm{M}=20 \mathrm{Marks}) \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Sketch the graphical symbol of the following hydraulic component (a) compound pressure relief valve (b) spring-centered lever operated $4 / 3$ direction control valve	4	CO1
Q2	Define and classify the pumps.	4	CO1
Q3	Define hydraulic circuit design. List the primary function of hydraulic circuit design.	4	CO1
Q4	Differentiate between hydraulic and pneumatics.	4	CO1
Q5	List four uses of accumulators.	4	CO1
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q6	A hydraulic motor has a displacement of $130 \mathrm{~cm}^{3}$ and operates with a pressure of 105 bars and speed of 2000 rpm . If the actual flow rate consumed by the motor is $0.005 \mathrm{~m}^{3} / \mathrm{s}$ and the actual torque delivered by the motor is 200 N.m , calculate the (a) η_{v} (b) η_{m} (c) η_{o}	10	$\mathrm{CO3}$
Q7	Sketch and explain the working of pressure relief valve.	10	CO2
Q8	A 20-in ${ }^{3}$ sample of oil is compressed in a cylinder until its pressure is increased from 50 to 1000 psi . If the bulk modulus equals $300,000 \mathrm{psi}$, find the change in volume of the oil.	10	$\mathrm{CO3}$

Q9	Draw and explain the working of bladder gas accumulator. OR Draw and explain the double pump hydraulic circuit for hydraulic punch machine.	10	CO2
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10	A hydraulic cylinder is to compress a car body down to bale size in 8 s .The operation requires a $3-\mathrm{m}$ stroke and a $40,000-\mathrm{N}$ force. If a $10-$ MPa pump has been selected, and assuming the cylinder is 100% efficient, find a. The required piston area $\left(\mathrm{m}^{2}\right)$ b. The necessary pump flow rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ c. The hydraulic power (kW) delivered to the cylinder d. The output power (kW) delivered by the cylinder to the load e. Solve parts a, b, c, and d assuming a 400-N friction force and a leakage of 1.0 LPM . What is the efficiency of the cylinder with the given friction force and leakage?	20	CO4
Q11	a. In the hydraulic jack shown in Figure, a force of 100 N is exerted on the small piston. Determine the upward force on the large piston. The area of the small piston is $50 \mathrm{~cm}^{2}$, and the area of the large piston is $500 \mathrm{~cm}^{2}$. b. A tank truck contains 125,000 liters of a hydraulic fluid having a specific gravity of 0.9 . Determine the fluid's specific weight, density, and weight. OR A compressor delivers air at 6.894 bar and $470 \mathrm{~m}^{3} / \mathrm{h}$. a. Determine the actual hp required to drive the compressor if the overall efficiency of the compressor is 75%. b. Repeat part a assuming the compressor is required to provide air at 7.92 bar to offset a 1.03bar pressure loss in the pipeline due to friction. c. Calculate the cost of electricity per year for parts a and b. Assume the efficiency of the electric motor driving the	$10+10$	$\begin{aligned} & \mathrm{CO} 3 \\ & \mathrm{CO} 4 \end{aligned}$

compressor is 92% and that the compressor operates 3000 hr per year. The cost of electricity is Rs $2 / \mathrm{kWh}$.

