Name:

Enrolment No:

UPES End Semester Examination, May 2023

Course: Hydraulics and Pneumatics Program: B. Tech Mechatronics Course Code: MECH3029

Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions

SECTION A (50x4M=20Marks)					
S. No.		Marks	СО		
Q 1	Sketch the graphical symbol of the following hydraulic component (a) compound pressure relief valve (b) spring-centered lever operated 4/3 direction control valve	4	CO1		
Q2	Define and classify the pumps.	4	CO1		
Q3	Define hydraulic circuit design. List the primary function of hydraulic circuit design.	4	CO1		
Q4	Differentiate between hydraulic and pneumatics.	4	CO1		
Q5	List four uses of accumulators.	4	CO1		
	SECTION B (4Qx10M= 40 Marks)		1		
Q6	A hydraulic motor has a displacement of 130 cm^3 and operates with a pressure of 105 bars and speed of 2000 rpm. If the actual flow rate consumed by the motor is $0.005 m^3/s$ and the actual torque delivered by the motor is 200 N.m, calculate the				
	(a) η_{v}	10	CO3		
	(b) η_m				
	(c) η_o				
Q7	Sketch and explain the working of pressure relief valve.	10	CO2		
Q8	A 20-in ³ sample of oil is compressed in a cylinder until its pressure is increased from 50 to 1000 psi. If the bulk modulus equals 300,000 psi, find the change in volume of the oil.	10	CO3		

Q9	Draw and explain the working of bladder gas accumulator. OR		
	Draw and explain the double pump hydraulic circuit for hydraulic punch machine.	10	CO2
	SECTION-C		
	(2Qx20M=40 Marks)	T	I
Q10	A hydraulic cylinder is to compress a car body down to bale size in 8 s.The operation requires a 3-m stroke and a 40,000-N force. If a 10- MPa pump has been selected, and assuming the cylinder is 100% efficient, find a. The required piston area (m ²) b. The necessary pump flow rate (m ³ /s) c. The hydraulic power (kW) delivered to the cylinder d. The output power (kW) delivered by the cylinder to the load e. Solve parts a, b, c, and d assuming a 400-N friction force and a leakage of 1.0 LPM. What is the efficiency of the cylinder with the given friction force and leakage?	20	CO4
Q11	 a. In the hydraulic jack shown in Figure, a force of 100 N is exerted on the small piston. Determine the upward force on the large piston. The area of the small piston is 50 cm², and the area of the large piston is 500 cm². b. A tank truck contains 125,000 liters of a hydraulic fluid having a specific gravity of 0.9. Determine the fluid's specific weight, density, and weight. 	10+10	CO3 CO4
	 A compressor delivers air at 6.894 bar and 470 m³/h. a. Determine the actual hp required to drive the compressor if the overall efficiency of the compressor is 75%. b. Repeat part a assuming the compressor is required to provide air at 7.92 bar to offset a 1.03bar pressure loss in the pipeline due to friction. c. Calculate the cost of electricity per year for parts a and b. Assume the efficiency of the electric motor driving the 	20	

compressor is 92% and that the compressor operates 3000 hr per	
year. The cost of electricity is Rs 2/kWh.	